Madalpingelised aparaadikoosted. Osa 1: Üldreeglid Low-voltage switchgear and controlgear assemblies -A Japanen Senerales of the Part 1: General rules #### **EESTI STANDARDI EESSÕNA** #### **NATIONAL FOREWORD** | See Eesti standard EVS-EN 61439-1:2012 sisaldab | This Estonian standard EVS-EN 61439-1:2012 | |--|--| | Euroopa standardi EN 61439-1:2011 ingliskeelset | consists of the English text of the European standard | | teksti. | EN 61439-1:2011. | | Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation. | | , | Date of Availability of the European standard is 28.10.2011. | | Standard on kättesaadav Eesti Standardikeskusest. | The standard is available from the Estonian Centre for Standardisation. | Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile standardiosakond@evs.ee. ICS 29.130.20 Võtmesõnad: controlgear, low-voltage, switchgear, #### Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; www.evs.ee; telefon 605 5050; e-post info@evs.ee #### The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation. If you have any questions about copyright, please contact Estonian Centre for Standardisation: Aru 10, 10317 Tallinn, Estonia; www.evs.ee; phone 605 5050; e-mail info@evs.ee ### **EUROPEAN STANDARD** ### EN 61439-1 ## NORME EUROPÉENNE EUROPÄISCHE NORM October 2011 ICS 29.130.20 Supersedes EN 61439-1:2009 English version # Low-voltage switchgear and controlgear assemblies Part 1: General rules (IEC 61439-1:2011) Ensembles d'appareillage à basse tension -Partie 1: Règles générales (CEI 61439-1:2011) Niederspannungs-Schaltgerätekombinationen -Teil 1: Allgemeine Festlegungen (IEC 61439-1:2011) This European Standard was approved by CENELEC on 2011-09-23. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. ## CENELEC European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Management Centre: Avenue Marnix 17, B - 1000 Brussels #### **Foreword** The text of document 17D/441/FDIS, future edition 2 of IEC 61439-1, prepared by SC 17D, "Low-voltage switchgear and controlgear assemblies", of IEC TC 17, "Switchgear and controlgear" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61439-1:2011. The following dates are fixed: | • | latest date by which the document has | (dop) | 2012-06-23 | |---|--|-------|------------| | | to be implemented at national level by | | | | | publication of an identical national | | | | | standard or by endorsement | | | | • | latest date by which the national | (dow) | 2014-09-23 | | | standards conflicting with the | | | | | document have to be withdrawn | | | This document supersedes EN 61439-1:2009. EN 61439-1:2011 includes the following significant technical changes with respect to EN 61439-1:2009: - revision of service conditions in Clause 7; - numerous changes regarding verification methods in Clause 10; - modification of routine verification in respect of clearances and creepage distances (see 11.3); - adaption of the tables in Annex C and Annex D to the revised requirements and verification methods; - shifting of tables from Annex H to new Annex N; - new Annex O with guidance on temperature rise verification; - new Annex P with a verification method for short-circuit withstand strength (integration of the content of IEC/TR 61117); - update of normative references; - general editorial review. NOTE It should be noted that when a dated reference to EN 60439-1 is made in another Part of the EN 60439 series of assembly standards not yet transferred into the new EN 61439 series, the superseded EN 60439-1 still applies (see also the Introduction below) Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s). For the relationship with EU Directive see informative Annex ZZ, which is an integral part of this document. #### **Endorsement notice** The text of the International Standard IEC 61439-1:2011 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 60038 NOTE Harmonized as EN 60038. IEC 60079 series NOTE Harmonized in EN 60079 series. IEC 60112:2003 NOTE Harmonized as EN 60112:2003 (not modified). IEC 60204 series NOTE Harmonized in EN 60204 series. IEC 60228:2004 NOTE Harmonized as EN 60228:2005 (not modified). IEC 60947 series NOTE Harmonized in EN 60947 series. IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. IEC 61000-6-2 NOTE Harmonized as EN 61000-6-2. | | |---|--| | IEC 60112:2003 NOTE Harmonized as EN 60112:2003 (not modified). IEC 60204 series NOTE Harmonized in EN 60204 series. IEC 60204-1 NOTE Harmonized as EN 60204-1. IEC 60228:2004 NOTE Harmonized as EN 60228:2005 (not modified). IEC 60947 series NOTE Harmonized in EN 60947 series. IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 60204 series NOTE Harmonized in EN 60204 series. IEC 60204-1 NOTE Harmonized as EN 60204-1. IEC 60228:2004 NOTE Harmonized as EN 60228:2005 (not modified). IEC 60947 series NOTE Harmonized in EN 60947 series. IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 60204-1 NOTE Harmonized as EN 60204-1. IEC 60228:2004 NOTE Harmonized as EN 60228:2005 (not modified). IEC 60947 series NOTE Harmonized in EN 60947 series. IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 60228:2004 NOTE Harmonized as EN 60228:2005 (not modified). IEC 60947 series NOTE Harmonized in EN 60947 series. IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 60947 series NOTE Harmonized in EN 60947 series. IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 61000-3-2:2005 NOTE Harmonized as EN 61000-3-2:2006 (not modified). IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 61000-3-3 NOTE Harmonized as EN 61000-3-3. IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 61000-3-11 NOTE Harmonized as EN 61000-3-11. IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 61000-3-12 NOTE Harmonized as EN 61000-3-12. IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | IEC 61000-6-1 NOTE Harmonized as EN 61000-6-1. | | | | | | IEC 61000-6-2 NOTE Harmonized as EN 61000-6-2. | | | | | | IEC 61000-6-3 NOTE Harmonized as EN 61000-6-3. | | | IEC 61082 series NOTE Harmonized in EN 61082 series. | | | IEC 61140:2001 NOTE Harmonized as EN 61140:2002 (not modified). | | | IEC 61241 series NOTE Harmonized in EN 61241 series. | | # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |-------------------------|-------------|---|---|----------------------| | IEC 60068-2-2 | 2007 | Environmental testing -
Part 2-2: Tests - Test B: Dry heat | EN 60068-2-2 | 2007 | | IEC 60068-2-11 | 1981 | Environmental testing -
Part 2: Tests - Test Ka: Salt mist | EN 60068-2-11 | 1999 | | IEC 60068-2-30 | 2005 | Environmental testing -
Part 2-30: Tests - Test Db: Damp heat, cyclic
(12 h + 12 h cycle) | EN 60068-2-30 | 2005 | | IEC 60073 | 2002 | Basic and safety principles for man-machine interface, marking and identification - Coding principles for indicators and actuators | EN 60073 | 2002 | | IEC 60085 | 2007 | Electrical insulation - Thermal evaluation and designation | EN 60085 | 2008 | | IEC 60216 | Series | Electrical insulating materials - Properties of thermal endurance | EN 60216 | Series | | IEC 60227-3 (mod) | 1993 | Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V - Part 3: Non-sheathed cables for fixed wiring | HD 21.3 S3 ¹⁾
+ A1
+ A2 | 1995
1999
2008 | | IEC 60245-3 | 1994 | Rubber insulated cables - Rated voltages up to and including 450/750 V - Part 3: Heat resistant silicone insulated cables | -
S | - | | IEC 60245-4 (mod) | 1994 | Cables of rated voltages up to and including 450/750 V and having cross-linked insulation Part 4: Cords and flexible cables | HD 22.4 S3 ²⁾
-+ A1
+ A2 | 1995
1999
2002 | | IEC 60364 | Series | Low-voltage electrical installations | HD 60364 | Series | | IEC 60364-4-41
(mod) | 2005 | Low-voltage electrical installations -
Part 4-41: Protection for safety - Protection
against electric shock | HD 60364-4-41
+ corr. July | 2007
2007 | | IEC 60364-4-44
(mod) | 2007 | Low voltage electrical installations -
Part 4-44: Protection for safety - Protection
against voltage disturbances and
electromagnetic disturbances | HD 60364-4-444
+ corr. July | 2010
2010 | | IEC 60364-5-52
(mod) | 2009 | Low-voltage electrical installations -
Part 5-52: Selection and erection of electrical
equipment - Wiring systems | HD 60364-5-52 | 2011 | | IEC 60364-5-53 | 2001 | Electrical installations of buildings -
Part 5-53: Selection and erection of electrical
equipment - Isolation, switching and control | - | G | ¹⁾ HD 21.3 S3 is superseded by EN 50525-2-31:2011. - $^{^{2)}\,\}mathrm{HD}$ 22.4 S3 is superseded by HD 22.4 S4:2004. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|----------------------------|--------------| | IEC 60364-5-54 | 2011 | Low-voltage electrical installations -
Part 5-54: Selection and erection of electrical
equipment - Earthing arrangements and
protective conductors | HD 60364-5-54 | 2011 | | IEC 60439 | Series | Low-voltage switchgear and controlgear assemblies | EN 60439 | Series | | IEC 60445 | 2010 | Basic and safety principles for man-machine interface, marking and identification - Identification of equipment terminals, conductor terminations and conductors | EN 60445 | 2010 | | IEC 60447 | 2004 | Basic and safety principles for man-machine interface, marking and identification - Actuating principles | EN 60447 | 2004 | | IEC 60529 | 1989 | Degrees of protection provided by enclosures (IP Code) | EN 60529
+ corr. May | 1991
1993 | | IEC 60664-1 | 2007 | Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests | EN 60664-1 | 2007 | | IEC 60695-2-10 | 2000 | Fire hazard testing -
Part 2-10: Glowing/hot-wire based test
methods - Glow-wire apparatus and common
test procedure | EN 60695-2-10 | 2001 | | IEC 60695-2-11 | 2000 | Fire hazard testing - Part 2-11: Glowing/hot-wire based test methods - Glow-wire flammability test method for end-products | EN 60695-2-11 | 2001 | | IEC 60695-11-5 | 2004 | Fire hazard testing - Part 11-5: Test flames - Needle-flame test method - Apparatus, confirmatory test arrangement and guidance | EN 60695-11-5 | 2005 | | IEC 60865-1 | 1993 | Short-circuit currents - Calculation of effects - Part 1: Definitions and calculation methods | EN 60865-1 | 1993 | | IEC/TR3 60890 | 1987 | A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear | CLC/TR 60890 ³⁾ | 2002 | | IEC 60947-1 | 2007 | Low-voltage switchgear and controlgear - Part 1: General rules | EN 60947-1 | 2007 | | IEC 61000-4-2 | 2008 | Electromagnetic compatibility (EMC) -
Part 4-2: Testing and measurement
techniques - Electrostatic discharge immunity
test | EN 61000-4-2 | 2009 | | IEC 61000-4-3 | 2006 | Electromagnetic compatibility (EMC) -
Part 4-3: Testing and measurement
techniques - Radiated, radio-frequency,
electromagnetic field immunity test | EN 61000-4-3 | 2006 | | IEC 61000-4-4 | 2004 | Electromagnetic compatibility (EMC) -
Part 4-4: Testing and measurement
techniques - Electrical fast transient/burst
immunity test | EN 61000-4-4 | 2004 | 3) CLC/TR 60890 includes A1:1995 to IEC/TR3 60890 + corr. March 1988. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|---------------|-------------| | IEC 61000-4-5 | 2005 | Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test | EN 61000-4-5 | 2006 | | IEC 61000-4-6 | 2008 | Electromagnetic compatibility (EMC) -
Part 4-6: Testing and measurement
techniques - Immunity to conducted
disturbances, induced by radio-frequency
fields | EN 61000-4-6 | 2009 | | IEC 61000-4-8 | 2009 | Electromagnetic compatibility (EMC) -
Part 4-8: Testing and measurement
techniques - Power frequency magnetic field
immunity test | EN 61000-4-8 | 2010 | | IEC 61000-4-11 | 2004 | Electromagnetic compatibility (EMC) -
Part 4-11: Testing and measurement
techniques - Voltage dips, short interruptions
and voltage variations immunity tests | EN 61000-4-11 | 2004 | | IEC 61000-4-13 | 2002 | Electromagnetic compatibility (EMC) -
Part 4-13: Testing and measurement
techniques - Harmonics and interharmonics
including mains signalling at a.c. power port,
low frequency immunity tests | EN 61000-4-13 | 2002 | | IEC 61000-6-4 | 2006 | Electromagnetic compatibility (EMC) -
Part 6-4: Generic standards - Emission
standard for industrial environments | EN 61000-6-4 | 2007 | | IEC 61082-1 | - | Preparation of documents used in electrotechnology - Part 1: Rules | EN 61082-1 | - | | IEC 61180 | Series | High-voltage test techniques for low-voltage equipment | EN 61180 | Series | | IEC/TS 61201 | 2007 | Use of conventional touch voltage limits - Application guide | - | - | | IEC 61439 | Series | Low-voltage switchgear and controlgear assemblies | EN 61439 | Series | | IEC 62208 | - | Empty enclosures for low-voltage switchgear and controlgear assemblies - General requirements | EN 62208 | - | | IEC 62262 | 2002 | Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code) | EN 62262 | 2002 | | IEC 81346-1 | - | Industrial systems, installations and equipment and industrial products - Structuring principles and reference designations - Part 1: Basic rules | EN 81346-1 | - | | IEC 81346-2 | - | Industrial systems, installations and equipment and industrial products - Structuring principles and reference designations - Part 2: Classification of objects and codes for classes | EN 81346-2 | 5 | | CISPR 11 (mod) | 2009 | Industrial, scientific and medical equipment -
Radio-frequency disturbance characteristics -
Limits and methods of measurement | EN 55011 | 2009 | | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|---|---------------------|-------------| | CISPR 22 | - | Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement | EN 55022 | - | | ISO 178 | 2001 | Plastics - Determination of flexural properties | EN ISO 178 | 2003 | | ISO 179 | Series | Plastics - Determination of Charpy impact properties | EN ISO 179 | Series | | ISO 2409 | 2007 | Paints and varnishes - Cross-cut test | EN ISO 2409 | 2007 | | ISO 4628-3 | 2003 | Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 3: Assessment of degree of rusting | EN ISO 4628-3
of | 2003 | | ISO 4892-2 | 2006 | Plastics - Methods of exposure to laboratory light sources - Part 2: Xenon-arc lamps | EN ISO 4892-2 | 2006 | | | | O | | | | | | | | | | | | 0, | | | | | | | | | | | | | | | | | | 4. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 9 | X | | | | | | 0 | | | | | | 6, | | | | | | | | | | | | | | | | | | | S | | | | | | | | | | | | | | | | | | | | | | | | | ## Annex ZZ (informative) #### Coverage of Essential Requirements of EC Directive 2004/108/EC This European Standard has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and within its scope the standard covers all relevant essential requirements as given in Article 1 of Annex I of the EC Directive 2004/108/EC. This Part 1 of the EN 61439 series alone does not give presumption of conformity with the essential requirements of the EMC Directive without another relevant part of the series (e.g. EN 61439-2 for power switchgear and controlgear assemblies). These product parts call up the applicable EMC requirements of EN 61439-1 for assemblies within their specific scope. nts and c WARNING: Other requirements and other EC Directives may be applicable to the products falling within the scope of this standard. ### CONTENTS | FOI | REWC | RD | 8 | | | |-----|----------------------|------------------------------------------------------------------------------------------------------------------|------|--|--| | INT | NTRODUCTION11 | | | | | | 1 | Scop | 9 | .12 | | | | 2 | Normative references | | | | | | 3 | Term | s and definitions | .15 | | | | | 3.1 | General terms | .15 | | | | | 3.2 | Constructional units of ASSEMBLIES | . 17 | | | | | 3.3 | External design of ASSEMBLIES | .18 | | | | | 3.4 | Structural parts of ASSEMBLIES | .18 | | | | | 3.5 | Conditions of installation of ASSEMBLIES | 20 | | | | | 3.6 | Insulation characteristics | | | | | | 3.7 | Protection against electric shock | | | | | | 3.8 | Characteristics | | | | | | 3.9 | Verification | | | | | | | Manufacturer/user | | | | | 4 | | ols and abbreviations | | | | | 5 | Interf | ace characteristics | | | | | | 5.1 | General | | | | | | 5.2 | Voltage ratings | | | | | | | 5.2.1 Rated voltage ($U_{\mathbf{n}}$) (of the ASSEMBLY) | | | | | | | 5.2.2 Rated operational voltage ($U_{\mathbf{e}}$) (of a circuit of an ASSEMBLY) | | | | | | | 5.2.3 Rated insulation voltage ($U_{\rm j}$) (of a circuit of an ASSEMBLY) | | | | | | | 5.2.4 Rated impulse withstand voltage ($U_{\mbox{imp}}$) (of the ASSEMBLY) | | | | | | 5.3 | Current ratings | | | | | | | 5.3.1 Rated current of the ASSEMBLY (InA) | . 30 | | | | | | 5.3.2 Rated current of a circuit (I _{nc}) | . 30 | | | | | | 5.3.3 Rated peak withstand current (<i>I</i> _{pk}) | . 30 | | | | | | 5.3.4 Rated short-time withstand current (I_{CW}) (of a circuit of an ASSEMBLY) | | | | | | - 1 | 5.3.5 Rated conditional short-circuit current of an ASSEMBLY $(I_{\rm CC})$ | | | | | | 5.4 | Rated diversity factor (RDF) | | | | | | 5.5 | Other characteristics | 31 | | | | 6 | 5.6 | nation | | | | | U | | | | | | | | 6.1 | ASSEMBLY designation marking | | | | | | 6.2 | Documentation | | | | | | | 6.2.1 Information relating to the ASSEMBLY | | | | | | 6.3 | 6.2.2 Instructions for handling, installation, operation and maintenance Device and/or component identification | | | | | 7 | | ce conditions | | | | | ′ | | | | | | | | 7.1 | Normal service conditions | | | | | | | 7.1.1 Ambient air temperature | | | | | | | • | | | | | | | 7.1.3 Pollution degree | | | | | | 7.2 | Special service conditions | | | | | | 7.2 | Conditions during transport, storage and installation | | | | | | , | conditions during transport, storage and installation | | | | | 8 | Cons | truction | al requirements | 35 | | | | |---|---------------------------------------|----------|------------------------------------------------------------------------------------------------------------|----|--|--|--| | | 8.1 | Streng | th of materials and parts | 35 | | | | | | | 8.1.1 | General | 35 | | | | | | | 8.1.2 | Protection against corrosion | 35 | | | | | | 2 | 8.1.3 | Properties of insulating materials | 35 | | | | | | | 8.1.4 | Resistance to ultra-violet radiation | | | | | | | | 8.1.5 | Mechanical strength | 36 | | | | | | | 8.1.6 | Lifting provision | | | | | | | 8.2 | Degree | e of protection provided by an ASSEMBLY enclosure | 36 | | | | | | | 8.2.1 | Protection against mechanical impact | 36 | | | | | | | 8.2.2 | Protection against contact with live parts, ingress of solid foreign bodies and water | 36 | | | | | | | 8.2.3 | ASSEMBLY with removable parts | 37 | | | | | | 8.3 | Cleara | nces and creepage distances | 37 | | | | | | | 8.3.1 | General | 37 | | | | | | | 8.3.2 | Clearances | 38 | | | | | | | 8.3.3 | Creepage distances | 38 | | | | | | 8.4 | Protect | tion against electric shock | 39 | | | | | | | 8.4.1 | General | 39 | | | | | | | 8.4.2 | Basic protection | 39 | | | | | | | 8.4.3 | Fault protection | 40 | | | | | | | 8.4.4 | Protection by total insulation | 42 | | | | | | | 8.4.5 | Limitation of steady-state touch current and charge | 43 | | | | | | | 8.4.6 | Operating and servicing conditions | 43 | | | | | | 8.5 | Incorpo | oration of switching devices and components | 45 | | | | | | | 8.5.1 | Fixed parts | 45 | | | | | | | 8.5.2 | Removable parts | 45 | | | | | | | 8.5.3 | Selection of switching devices and components | 46 | | | | | | | 8.5.4 | Installation of switching devices and components | 46 | | | | | | | 8.5.5 | Accessibility | 46 | | | | | | | 8.5.6 | Barriers | 47 | | | | | | | 8.5.7 | Direction of operation and indication of switching positions | 47 | | | | | | | 8.5.8 | Indicator lights and push-buttons | | | | | | | 8.6 | Interna | Il electrical circuits and connections | 47 | | | | | | | 8.6.1 | Main circuits | 47 | | | | | | | 8.6.2 | Auxiliary circuits | | | | | | | | 8.6.3 | Bare and insulated conductors | | | | | | | | 8.6.4 | Selection and installation of non-protected live conductors to reduce the possibility of short-circuits | | | | | | | | 8.6.5 | Identification of the conductors of main and auxiliary circuits | | | | | | | | 8.6.6 | Identification of the protective conductor (PE, PEN) and of the neutral conductor (N) of the main circuits | | | | | | | 8.7 | Cooling | g | | | | | | | 8.8 Terminals for external conductors | | | | | | | | 9 | Perfo | rmance | requirements | 51 | | | | | | 9.1 | Dielect | ric properties | 51 | | | | | | | 9.1.1 | General | | | | | | | | 9.1.2 | Power-frequency withstand voltage | | | | | | | | - | Impulse withstand voltage | 51 | | | | | | | 9.1.4 | Protection of surge protective devices | 51 | |----|------------|-----------|------------------------------------------------------------------------------------------------------------|----| | | 9.2 | Tempe | rature rise limits | 52 | | | 9.3 | Short-d | circuit protection and short-circuit withstand strength | 52 | | | | 9.3.1 | General | 52 | | | 9 . | 9.3.2 | Information concerning short-circuit withstand strength | 52 | | | | 9.3.3 | Relationship between peak current and short-time current | 53 | | | | 9.3.4 | Co-ordination of protective devices | 53 | | | 9.4 | Electro | magnetic compatibility (EMC) | 53 | | 10 | Desig | gn verifi | cation | 54 | | | 10.1 | Genera | al | 54 | | | 10.2 | Streng | th of materials and parts | 55 | | | | 10.2.1 | General | 55 | | | | 10.2.2 | Resistance to corrosion | 55 | | | | 10.2.3 | Properties of insulating materials | 56 | | | | 10.2.4 | Resistance to ultra-violet (UV) radiation | 58 | | | | 10.2.5 | Lifting | 58 | | | | 10.2.6 | Mechanical impact | 59 | | | | 10.2.7 | Marking | 59 | | | 10.3 | Degree | e of protection of ASSEMBLIES | 59 | | | 10.4 | Cleara | nces and creepage distances | 59 | | | 10.5 | Protect | tion against electric shock and integrity of protective circuits | 60 | | | | 10.5.1 | Effectiveness of the protective circuit | 60 | | | | 10.5.2 | Effective earth continuity between the exposed conductive parts of the ASSEMBLY and the protective circuit | 60 | | | | 10.5.3 | Short-circuit withstand strength of the protective circuit | 60 | | | 10.6 | Incorpo | oration of switching devices and components | 61 | | | | 10.6.1 | General | 61 | | | | | Electromagnetic compatibility | | | | | | Il electrical circuits and connections | | | | | | als for external conductors | | | | 10.9 | Dielect | ric properties | 61 | | | | | General | | | | | 10.9.2 | Power-frequency withstand voltage | 61 | | | | 10.9.3 | Impulse withstand voltage | 62 | | | | 10.9.4 | Testing of enclosures made of insulating material | 64 | | | | 10.9.5 | External operating handles of insulating material | 64 | | | 10.10 | | ation of temperature rise | | | | | | 1 General | | | | | 10.10.2 | 2Verification by testing | 64 | | | | | BDerivation of ratings for similar variants | | | | | 10.10.4 | 4Verification assessment | 71 | | | 10.11 | | circuit withstand strength | | | | | | 1 General | | | | | 10.11.2 | 2 Circuits of ASSEMBLIES which are exempted from the verification of the short-circuit withstand strength | | | | | 10.11.3 | 3Verification by comparison with a reference design – Utilising a check list | 75 | | | | 10.11.4 | Verification by comparison with a reference design – Utilising calculation | 75 | | | | 10.11.5 | 5Verification by test | 75 | | 10.12 Electromagnetic compatibility (EMC) | 80 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 10.13 Mechanical operation | 80 | | 11 Routine verification | 80 | | 11.1 General | 80 | | 11.2 Degree of protection of enclosures | 81 | | 11.3 Clearances and creepage distances | 81 | | 11.4 Protection against electric shock and integrity of protective circuits | 81 | | 11.5 Incorporation of built-in components | | | 11.6 Internal electrical circuits and connections | | | 11.7 Terminals for external conductors | | | 11.8 Mechanical operation | | | 11.9 Dielectric properties | | | 11.10 Wiring, operational performance and function | 82 | | Annex A (normative) Minimum and maximum cross-section of copper conductors suitable for connection to terminals for external conductors (see 8.8) | 90 | | Annex B (normative) Method of calculating the cross-sectional area of protective conductors with regard to thermal stresses due to currents of short duration | 91 | | Annex C (informative) User information template | 92 | | Annex D (informative) Design verification | 96 | | Annex E (informative) Rated diversity factor | 97 | | Annex F (normative) Measurement of clearances and creepage distances | 106 | | Annex G (normative) Correlation between the nominal voltage of the supply system and the rated impulse withstand voltage of the equipment | 111 | | Annex H (informative) Operating current and power loss of copper conductors | 113 | | Annex I (Void) | | | Annex J (normative) Electromagnetic compatibility (EMC) | | | Annex K (normative) Protection by electrical separation | | | Annex L (informative) Clearances and creepage distances for North American region | | | Annex M (informative) North American temperature rise limits | | | | | | Annex N (normative) Operating current and power loss of bare copper bars | | | Annex O (informative) Guidance on temperature rise verification | 130 | | Annex P (normative) Verification of the short-circuit withstand strength of busbar structures by comparison with a tested reference design by calculation | | | Bibliography | 139 | | | | | Figure E.1 – Typical ASSEMBLY | 98 | | Figure E.2 – Example 1: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8 | 100 | | Figure E.3 – Example 2: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8 | 101 | | Figure E.4 – Example 3: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8 | 102 | | Figure E.5 – Example 4: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8 | 103 | | Figure E.6 – Example of average heating effect calculation | 104 | | Figure E.7 – Example graph for the relation between the equivalent RDF and the parameters at intermittent duty at $t_1 = 0.5$ s. $t_2 = 7*t_2$ at different cycle times | 105 | | Figure E.8 – Example graph for the relation between the equivalent RDF and the parameters at intermittent duty at $I_1 = I_2$ (no starting overcurrent) | 105 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | Figure F.1 – Measurement of ribs | | | Figure J.1 – Examples of ports | | | Figure O.1 – Temperature rise verification methods | | | Figure P.1 – Tested busbar structure (TS) | | | Figure P.2 – Non tested busbar structure (NTS) | | | Figure P.3 – Angular busbar configuration with supports at the corners | | | Table 1 – Minimum clearances in air ^a (8.3.2) | 82 | | Table 2 – Minimum creepage distances (8.3.3) | 83 | | Table 3 – Cross-sectional area of a copper protective conductor (8.4.3.2.2) | 83 | | Table 4 – Conductor selection and installation requirements (8.6.4) | 84 | | Table 5 – Minimum terminal capacity for copper protective conductors (PE, PEN) (8.8) | 84 | | Table 6 – Temperature-rise limits (9.2) | 85 | | Table 7 – Values for the factor $n = (9.3.3)$ | 86 | | Table 8 – Power-frequency withstand voltage for main circuits (10.9.2) | 86 | | Table 9 – Power-frequency withstand voltage for auxiliary and control circuits (10.9.2) | 86 | | Table 10 – Impulse withstand test voltages (10.9.3) | 87 | | Table 11 – Copper test conductors for rated currents up to 400 A inclusive (10.10.2.3.2) | | | Table 12 – Copper test conductors for rated currents from 400 A to 4 000 A (10.10.2.3.2) | 88 | | Table 13 – Short-circuit verification by comparison with a reference design: check list (10.5.3.3, 10.11.3 and 10.11.4) | 88 | | Table 14 – Relationship between prospective fault current and diameter of copper wire . | 89 | | Table A.1 – Cross-section of copper conductors suitable for connection to terminals for external conductors | 90 | | Table B.1 – Values of k for insulated protective conductors not incorporated in cables, or bare protective conductors in contact with cable covering | | | Table C.1 – Template | | | Table D.1 – List of design verifications to be performed | 96 | | Table E.1 – Examples of loading for an ASSEMBLY with a rated diversity factor of 0,8 | 99 | | Table E.2 – Example of loading of a group of circuits (Section B – Figure E.1) with a rated diversity factor of 0,9 | 104 | | Table E.3 – Example of loading of a group of circuits (Sub-distribution board – Figure E.1) with a rated diversity factor of 0,9 | | | Table F.1 – Minimum width of grooves | 106 | | Table G.1 – Correspondence between the nominal voltage of the supply system and the equipment rated impulse withstand voltage | 112 | | Table H.1 – Operating current and power loss of single-core copper cables with a permissible conductor temperature of 70 °C (ambient temperature inside the ASSEMBLY: 55 °C) | 113 | | Table H.2 – Reduction factor k_1 for cables with a permissible conductor temperature | | | of 70 °C (extract from IEC 60364-5-52:2009, Table B.52.14) | 114 | | Table J.1 – Tests for EMC immunity for environment A (see J.10.12.1) | 120 | | Table J.2 – Tests for EMC immunity for environment B (see J.10.12.1) | 121 | | able J.3 – Acceptance criteria when electromagnetic disturbances are present12 | 22 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | able K.1 – Maximum disconnecting times for TN systems12 | 25 | | able L.1 – Minimum clearances in air12 | 26 | | able L.2 – Minimum creepage distances12 | 26 | | able M.1 – North American temperature rise limits12 | 27 | | able N.1 – Operating current and power loss of bare copper bars with rectangular ross-section, run horizontally and arranged with their largest face vertical, frequency 0 Hz to 60 Hz (ambient temperature inside the ASSEMBLY: 55 °C, temperature of the onductor 70 °C) | 28 | | able N.2 – Factor k_4 for different temperatures of the air inside the ASSEMBLY and/or the conductors | 20 | | | | #### INTRODUCTION The purpose of this standard is to harmonize as far as practicable all rules and requirements of a general nature applicable to low-voltage switchgear and controlgear assemblies (ASSEMBLIES) in order to obtain uniformity of requirements and verification for ASSEMBLIES and to avoid the need for verification to other standards. All those requirements for the various ASSEMBLIES standards which can be considered as general have therefore been gathered in this basic standard together with specific subjects of wide interest and application, e.g. temperature rise, dielectric properties, etc. For each type of low-voltage switchgear and controlgear assembly only two main standards are necessary to determine all requirements and the corresponding methods of verification: - this basic standard referred to as "Part 1" in the specific standards covering the various types of low-voltage switchgear and controlgear assemblies; - the specific ASSEMBLY standard hereinafter also referred to as the relevant ASSEMBLY standard. For a general rule to apply to a specific ASSEMBLY standard, it should be explicitly referred to by quoting the relevant clause or sub-clause number of this standard followed by "Part 1" e.g. "9.1.3 of Part 1". A specific ASSEMBLY standard may not require and hence need not call up a general rule where it is not applicable, or it may add requirements if the general rule is deemed inadequate in the particular case but it may not deviate from it unless there is substantial technical justification detailed in the specific ASSEMBLY standard. Where in this standard a cross-reference is made to another clause, the reference is to be taken to apply to that clause as amended by the specific ASSEMBLY standard, where applicable. Requirements in this standard that are subject to agreement between the ASSEMBLY manufacturer and the user are summarised in Annex C (informative). This schedule also facilitates the supply of information on basic conditions and additional user specifications to enable proper design, application and utilization of the ASSEMBLY. For the new re-structured IEC 61439 series, the following parts are envisaged: - a) IEC 61439-1: General rules - b) IEC 61439-2: Power switchgear and controlgear ASSEMBLIES (PSC-ASSEMBLIES) - c) IEC 61439-3: Distribution boards (to supersede IEC 60439-3) - d) IEC 61439-4: ASSEMBLIES for construction sites (to supersede IEC 60439-4) - e) IEC 61439-5: ASSEMBLIES for power distribution (to supersede IEC 60439-5) - f) IEC 61439-6: Busbar trunking systems (to supersede IEC 60439-2) - g) IEC/TR 61439-0: Guidance to specifying ASSEMBLIES. This list is not exhaustive; additional Parts may be developed as the need arises. ## LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR ASSEMBLIES - Part 1: General rules #### 1 Scope NOTE 1 Throughout this standard, the term ASSEMBLY (see 3.1.1) is used for a low-voltage switchgear and controlgear assembly. This part of the IEC 61439 series lays down the definitions and states the service conditions, construction requirements, technical characteristics and verification requirements for low-voltage switchgear and controlgear assemblies. This standard cannot be used alone to specify an ASSEMBLY or used for a purpose of determining conformity. ASSEMBLIES shall comply with the relevant part of the IEC 61439 series; Parts 2 onwards. This standard applies to low-voltage switchgear and controlgear assemblies (ASSEMBLIES) only when required by the relevant ASSEMBLY standard as follows: - ASSEMBLIES for which the rated voltage does not exceed 1 000 V in case of a.c. or 1 500 V in case of d.c.; - stationary or movable ASSEMBLIES with or without enclosure; - ASSEMBLIES intended for use in connection with the generation, transmission, distribution and conversion of electric energy, and for the control of electric energy consuming equipment; - ASSEMBLIES designed for use under special service conditions, for example in ships and in rail vehicles provided that the other relevant specific requirements are complied with; - NOTE 2 Supplementary requirements for ASSEMBLIES in ships are covered by IEC 60092-302. - ASSEMBLIES designed for electrical equipment of machines provided that the other relevant specific requirements are complied with. - NOTE 3 Supplementary requirements for ASSEMBLIES forming part of a machine are covered by the IEC 60204 series. This standard applies to all ASSEMBLIES whether they are designed, manufactured and verified on a one-off basis or fully standardised and manufactured in quantity. The manufacture and/or assembly may be carried out other than by the original manufacturer (see 3.10.1). This standard does not apply to individual devices and self-contained components, such as motor starters, fuse switches, electronic equipment, etc. which will comply with the relevant product standards. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60068-2-11:1981, Basic environmental testing procedures – Part 2-11: Tests – Test Ka: Salt mist IEC 60068-2-30:2005, Environmental testing – Part 2-30: Tests – Test Db: Damp heat, cyclic (12 + 12 h cycle) IEC 60073:2002, Basic and safety principles for man-machine interface, marking and identification – Coding principles for indicators and actuators IEC 60085:2007, Electrical insulation – Thermal evaluation and designation IEC 60216 (all parts), Electrical insulating materials - Properties of thermal endurance IEC 60227-3:1993, Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 3: Non-sheathed cables for fixed wiring IEC 60245-3:1994, Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 3: Heat resistant silicone insulated cables IEC 60245-4:1994, Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 4: Cords and flexible cables IEC 60364 (all parts), Low-voltage electrical installations IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock IEC 60364-4-44:2007, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances IEC 60364-5-52:2009, Low-voltage electrical installations – Part 5-52: Selection and erection of electrical equipment – Wiring systems IEC 60364-5-53:2001, Electrical installations of buildings – Part 5-53: Selection and erection of electrical equipment – Isolation, switching and control IEC 60364-5-54:2011, Low-voltage electrical installations – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements and protective conductors IEC 60439 (all parts), Low-voltage switchgear and controlgear assemblies IEC 60445:2010, Basic and safety principles for man-machine interface, marking and identification – Identification of equipment terminals, conductor terminations and conductors IEC 60447:2004, Basic and safety principles for man-machine interface, marking and identification – Actuating principles IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)¹ IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests ¹ There is a consolidated edition 1.1 (2001) that includes IEC 60529 (1989) and its amendment 1 (1999). IEC 60695-2-10:2000, Fire Hazard testing – Part 2-10: Glowing/hot-wire based test methods – Glow-wire apparatus and common test procedure IEC 60695-2-11:2000, Fire hazard testing – Part 2-11: Glowing/hot-wire based test methods – Glow-wire flammability test method for end-products IEC 60695-11-5:2004, Fire hazard testing – Part 11-5: Test flames – Needle-flame test method – Apparatus, confirmatory test arrangement and guidance IEC 60865-1:1993, Short-circuit currents – Calculation of effects – Part 1: Definitions and calculation methods IEC 60890:1987, A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear IEC 60947-1:2007, Low-voltage switchgear and controlgear - Part 1: General rules IEC 61000-4-2:2008, Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test IEC 61000-4-3:2006, Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio frequency, electromagnetic field immunity test² IEC 61000-4-4:2004, Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test IEC 61000-4-5:2005, Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test IEC 61000-4-6:2008, Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields IEC 61000-4-8:2009, Electromagnetic compatibility (EMC) – Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test IEC 61000-4-11:2004, Electromagnetic compatibility (EMC) – Part 4-11: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations immunity tests IEC 61000-4-13:2002, Electromagnetic compatibility (EMC) – Part 4-13: Testing and measurement techniques – Harmonics and interharmonics including mains signalling at a.c. power port, low-frequency immunity tests³ IEC 61000-6-4:2006, Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments⁴ IEC 61082-1, Preparation of documents used in electrotechnology - Part 1:Rules IEC 61180 (all parts), High-voltage test techniques for low-voltage equipment ² There is a consolidated edition 3.2 (2010) that includes IEC 61000-4-3 (2006) and amendment 1 (2007) and amendment 2 (2010). ³ There is a consolidated edition 1.1 (2009) that includes IEC 61000-4-13 (2002) and its amendment 1 (2009). ⁴ There is a consolidated edition 2.1 (2011) that includes IEC 61000-6-4 (2006) and its amendment 1 (2010).