Micrographic examination of the non-metallic inclusion content of steels using standard pictures



#### EESTI STANDARDI EESSÕNA

#### NATIONAL FOREWORD

|                                                                                                                           | This Estonian standard EVS-EN 10247:2017 consists of the English text of the European standard EN 10247:2017.                      |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas                                                         | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation. |
| Euroopa standardimisorganisatsioonid on teinud<br>Euroopa standardi rahvuslikele liikmetele<br>kättesaadavaks 12.07.2017. | Date of Availability of the European standard is 12.07.2017.                                                                       |
| Standard on kättesaadav Eesti<br>Standardikeskusest.                                                                      | The standard is available from the Estonian Centre for Standardisation.                                                            |

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

#### ICS 77.040.99

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht <a href="www.evs.ee">www.evs.ee</a>; telefon 605 5050; e-post <a href="mailto:info@evs.ee">info@evs.ee</a>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

## EUROPEAN STANDARD

## NORME EUROPÉENNE

### **EUROPÄISCHE NORM**

July 2017

EN 10247

ICS 77.040.99

Supersedes EN 10247:2007

#### **English Version**

# Micrographic examination of the non-metallic inclusion content of steels using standard pictures

Détermination micrographique de la teneur en inclusions non-métalliques des aciers à l'aide d'imagestypes

Metallographische Prüfung des Gehaltes nichtmetallischer Einschlüsse in Stählen mit Bildreihen

This European Standard was approved by CEN on 18 January 2017.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.



EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

| Cont  | tents                                                       | Page |
|-------|-------------------------------------------------------------|------|
| Europ | pean foreword                                               | 5    |
| -     | duction                                                     |      |
| 1     | Scope                                                       |      |
|       | Normative references                                        |      |
| 2     |                                                             |      |
| 3     | Terms and definitions                                       |      |
| 4     | Symbols and abbreviations                                   | 10   |
| 5     | Principles                                                  | 12   |
| 6     | Brief practical guide                                       | 13   |
| 6.1   | Basic rules for evaluation                                  | 13   |
| 6.2   | Evaluation according to the default rating methods          |      |
| 7     | Sampling                                                    |      |
| 7.1   | General                                                     |      |
| 7.2   | Degree of reduction                                         |      |
| 7.3   | Size and location of test area                              | _    |
| 7.4   | Number of specimens                                         |      |
| 7.5   | Preparation of specimens                                    |      |
| 8     | Test method                                                 | 16   |
| 8.1   | Magnification                                               |      |
| 8.2   | Microscope settings for image analysis and manual analysis  |      |
| 8.3   | Field of view                                               |      |
| 8.4   | Definition of the pictures of the chart                     |      |
| 8.4.1 | Size and Shape                                              |      |
| 8.4.2 | Parameters                                                  |      |
| 8.4.3 | Arrangement of the pictures                                 |      |
| 8.5   | Procedure                                                   |      |
| 8.5.1 | General                                                     |      |
| 8.5.2 | Several inclusions of mixed sizes in one field              | 18   |
| 8.5.3 | Scanning                                                    | 18   |
| 8.5.4 | Assessment and evaluation                                   |      |
| 8.5.5 | Evaluation of different types of inclusions                 |      |
| 8.5.6 | Recording of results                                        |      |
| 9     | Types of assessment                                         | 19   |
| 9.1   | Worst inclusion method: method P                            | 19   |
| 9.1.1 | Principle                                                   | 19   |
| 9.1.2 | Evaluation of $P_{ m L}$ (worst length)                     | 20   |
| 9.1.3 | Evaluation of $P_{\mathbf{d}}$ (worst diameter)             |      |
| 9.1.4 | Evaluation of P <sub>a</sub> (worst area)                   |      |
| 9.2   | Worst field method: method M                                | 20   |
| 9.2.1 | Principle                                                   | 20   |
| 9.2.2 | Evaluation of $M_{\mathbf{n}}$ (rating according to number) | 20   |
| 9.2.3 | Evaluation of M <sub>L</sub> (rating according to length)   | 20   |

| 9.2.4          | Evaluation of $M_{ m d}$ (rating according to diameter)                             | 20 |
|----------------|-------------------------------------------------------------------------------------|----|
| 9.2.5          | Evaluation of $M_{\mathbf{a}}$ (rating according to area)                           | 21 |
| 9.3            | Average field method: method K                                                      |    |
| 9.3.1<br>9.3.2 | PrincipleScanning of a specimen for average field assessment                        |    |
| 9.3.2          | Evaluation                                                                          |    |
| 9.3.4          | Evaluation of $K_n$ , $K_L$ for elongated and $K_n$ , $K_d$ for globular inclusions |    |
| 9.3.5          | Evaluation of $K_{\mathbf{n}}$ and $K_{\mathbf{a}}$                                 | 22 |
| 10             | Test report                                                                         | 22 |
| Anne           | x A (normative) Type of inclusions                                                  | 34 |
| Anne           | x B (normative) Parameters and assessments to be used if not otherwise specified    | 37 |
| Anne           | x C (informative) Examples for inclusions of different types                        | 38 |
| Anne           | x D (informative) Shape factor                                                      | 42 |
| Anne           | x E (informative) Examples for magnification                                        | 43 |
| Anne           | x F (informative) Details of the eyepiece graticules                                | 45 |
| Anne           | x G (normative) Manufacturing specifications of the eyepiece graticule              | 46 |
| <b>G.1</b>     | General                                                                             |    |
| <b>G.2</b>     | Narrow field microscopes                                                            | 46 |
| <b>G.3</b>     | Broad field microscopes                                                             | 48 |
|                | x H (normative) Calculation basis for the pictures of the chart                     |    |
| Anne           | x I (normative) Rules for classification                                            |    |
| I.1            | Definition of classes                                                               |    |
| I.2            | Classification of length                                                            | 52 |
| I.3            | Classification of width                                                             |    |
| <b>I.4</b>     | Classification of diameter                                                          | 52 |
| Anne           | x J (informative) Comparison of inclusion types in different standards              | 53 |
|                | x K (informative) Worst inclusion assessment                                        |    |
| Anne           | x L (informative) Worst field assessment                                            |    |
| L.1            | General                                                                             |    |
| L.2            | Evaluation of M <sub>n</sub>                                                        | 58 |
| L.3            | Evaluation of M <sub>n</sub> , M <sub>L</sub> and M <sub>d</sub>                    | 58 |
| L.4            | Evaluation of $M_{ m n}$ and $M_{ m a}$                                             | 58 |
| Anne           | x M (informative) Average field assessment                                          | 62 |
| M.1            | General                                                                             |    |
| M.2            | Evaluation of K <sub>n</sub> , K <sub>L</sub> and K <sub>d</sub>                    | 62 |
| M.3            | Evaluation of K <sub>n</sub> and K <sub>a</sub>                                     |    |
| M.4            | Restricted assessment                                                               | 62 |

| Anne | x N (normative) Calculation basis for the assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| N.1  | Worst inclusion assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74 |
| N.2  | Worst field assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| N.3  | Average field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 |
| Anne | ex O (informative) Edge Errors correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77 |
| 0.1  | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 0.2  | Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 0.3  | Large inclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|      | ex P (normative) Calculation of average values of parameters for one class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|      | ex Q (normative) Average values of parametersography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|      | The solution of the solution o |    |

#### **European foreword**

This document (EN 10247:2017) has been prepared by Technical Committee ECISS/TC 101 "Test methods for steel (other than chemical analysis)", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2018, and conflicting national standards shall be withdrawn at the latest by January 2018.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 10247:2007.

The many changes in the current revision result from only a few basic adjustments. The length to width limit ratio for globular inclusions has been changed from 1,3 to 3 (Annex I), and the mathematical principles underlying the chart have been more clearly defined (Annex H). These two changes have led to many numerical changes in Table 2 and Figure 11, where moreover some classes have been deleted and others added. The rules of assessment have changed, most notably to allow stringer formation from two particles upward (Subclause 3.1.2, Annex B), to exclude stringer formation between a stringer and a single particle (Subclause 3.1.2), and to consistently define the classification of inclusions by shape, arrangement, and colour (Clause 3, Annexes A and B). Finally, the assessment and recording sheets have been redesigned to simplify manual use (Annexes K, L, and M).

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

#### Introduction

This document establishes procedures for the assessment of inclusions in steels, based on their morphology using standard pictures.

These procedures include principles that yield results coherent with consolidated individual inclusion measurements and expressed in physical units.

The chart of standard pictures is derived from mathematical principles. In distinction to other inclusion rating standards, in this standard the order of the classification begins with the length (row index q).

The results may be directly computed from field assessments. The same precision level is achieved by ev.
Ilength using the same method in manual evaluation and computer controlled measurements.

The results are in physical units: length in  $\mu m/mm^2$ , number/mm<sup>2</sup>, areas in  $\mu m^2/mm^2$ .

#### 1 Scope

This European Standard defines a method of microscopic non-metallic endogenous inclusion assessment using picture charts.

The method does not apply to particles of a length or diameter less than 3,0  $\mu$ m or a width smaller than 2,0  $\mu$ m. If defined by a product standard or agreement between the involved parties for certain special products, inclusions with a width below 2,0  $\mu$ m can be evaluated by length alone. Inclusions with dimensions exceeding the upper limits in Table 2 are evaluated as belonging to the maximum class and noted separately with their true dimensions (see 8.5.6).

It is assumed, if particles are elongated or if there are stringers of particles, that they are parallel to each other. Other arrangements are not covered by this draft standard. This draft European Standard applies to samples with a microscopic precipitation approaching random distribution.

From the data of measurements obtained by this method, evaluation according to other standards can be established.

This draft European Standard does not apply to free cutting steels.

NOTE The basic principle of this draft European Standard allows the determination of non-metallic inclusion content by image analysis techniques.

#### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025)

ISO 9042, Steels — Manual point counting method for statistically estimating the volume fraction of a constituent with a point grid

#### 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

#### 3.1 General:

#### 3.1.1

#### particle

single precipitate, in general non-metallic

#### 3.1.2

#### stringer

arrangement of at least 2 particles, normally aligned, that meet the proximity conditions  $e \le 40 \, \mu m$  and  $t \le 10 \, \mu m$ 

Note 1 to entry: For formation of stringers particles with  $L < 3 \, \mu m$  or  $w < 2 \, \mu m$  are not taken into account (see Figure 5).

Note 2 to entry: See Figure 3 for proximity conditions, Figure 7 and Annex B and Annex C for examples