INTERNATIONAL ELECTROTECHNICAL COMMISSION

IEC 62271-1 Edition 2.0 2017-07

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

Part 1: Common specifications for alternating current switchgear and controlgear

INTERPRETATION SHEET 1

This interpretation sheet has been prepared by IEC technical committee 17: High-voltage switchgear and controlgear.

The text of this interpretation sheet is based on the following documents:

DISH	Report on voting
17/1090/DISH	17/1095/RVDISH

Full information on the voting for the approval of this interpretation sheet can be found in the report on voting indicated in the above table.

Interpretation of 4.2.2 of IEC 62271-1:2017 regarding the altitude correction factor

Subclause 4.2.2 of IEC 62271-1:2017 contains two references for calculation of the required insulation withstand level at altitudes higher than 1 000 m, IEC 60071-2:1996 and IEC TR 62271-306. The two references are in conflict, as the altitude correction factor according to IEC 60071-2:1996 starts at sea level and that of IEC TR 62271-306 starts at an altitude of 1 000 m. This results in different altitude correction factors.

As already stated in 5.3 of IEC 62271-1:2017, the rated insulation levels refer to normal service conditions. Altitudes up to 1 000 m above sea level are covered and need no altitude correction.

For altitudes higher than 1 000 m the equation provided in 4.5.1.1 b) of IEC TR 62271-306:2012 and in H.3.4 of IEC 60071-2:2018 shall be used, i.e.

$$k_{\text{alt}} = e^{m(\frac{H-1\,000}{8\,150})}$$

where

 k_{alt} is the altitude correction factor;

H is the altitude in m above sea level;

m is an exponent.

Conservative values for the exponent m are provided in Table 4 of IEC TR 62271-306:2012. For further details about the exponent m, see H.4 of IEC 60071-2:2018.

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

IEC 62271-1 Édition 2.0 2017-07

APPAREILLAGE À HAUTE TENSION -

Partie 1: Spécifications communes pour appareillage à courant alternatif

FEUILLE D'INTERPRÉTATION 1

Cette feuille d'interprétation a été établie par le comité d'études 17 de l'IEC: Appareillage haute tension.

Le texte de cette feuille d'interprétation est issu des documents suivants:

DISH	Rapport de vote
17/1090/DISH	17/1095/RVDISH

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette feuille d'interprétation.

Interprétation du 4.2.2 de l'IEC 62271-1:2017 qui traite du facteur de correction de l'altitude

Le Paragraphe 4.2.2 de l'IEC 62271-1:2017 cite deux documents de référence pour le calcul du niveau de tenue de l'isolation exigé à des altitudes supérieures à 1 000 m, l'IEC 60071-2:1996 et l'IEC TR 62271-306. Ces deux documents de référence sont en contradiction, dans la mesure où le facteur de correction de l'altitude selon l'IEC 60071-2:1996 commence au niveau de la mer alors que celui donné par l'IEC TR 62271-306 commence à une altitude de 1 000 m. Les facteurs de correction de l'altitude qui en résultent sont différents.

Comme déjà énoncé au 5.3 de l'IEC 62271-1:2017, les niveaux d'isolement assignés font référence aux conditions normales de service. Les altitudes jusqu'à 1 000 m au-dessus du niveau de la mer sont couvertes et elles ne nécessitent pas d'avoir recours à un facteur de correction.

Pour les altitudes supérieures à 1 000 m, l'équation donnée au 4.5.1.1 b) de l'IEC TR 62271-306:2012 et au H.3.4 de l'IEC 60071-2:2018 doit être utilisée, c'est-à-dire

$$k_{\text{alt}} = e^{m(\frac{H-1\,000}{8\,150})}$$

οù

 k_{alt} est le facteur de correction d'altitude;

H est l'altitude au-dessus du niveau de la mer;

m est un exposant.

Des valeurs prudentes pour l'exposant m sont fournies dans le Tableau 4 de l'IEC TR 62271-306:2012. Pour de plus amples détails au sujet de l'exposant m, voir l'Article H.4 de l'IEC 60071-2:2018.