
ISO/IEC 1539-1:2018/Cor.2:2023(E)

ICS 35.060 Ref. No. ISO/IEC 1539-1:2018/Cor.2:2023(E)

© ISO/IEC 2023 – All rights reserved

Published in Switzerland

INTERNATIONAL STANDARD ISO/IEC 1539-1:2018
TECHNICAL CORRIGENDUM 2
Published 2023-03

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION • МЕЖДУНАРОДНАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМИССИЯ • COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Information technology — Programming languages — Fortran —
Part 1: Base language

TECHNICAL CORRIGENDUM 2

Technologies de l'information — Langages de programmation — Fortran — Partie 1: Langage de
base

RECTIFICATIF TECHNIQUE 2

Technical Corrigendum 2 to ISO/IEC 1539-1:2018 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

ISO/IEC 1539-1:2018/Cor.2:2023(E)

ii © ISO/IEC 2023 – All rights reserved

Blank page

ISO/IEC 1539-1:2018/Cor.2:2023(E)

© ISO/IEC 2023 – All rights reserved 1

Information technology — Programming languages — Fortran —
Part 1: Base language

TECHNICAL CORRIGENDUM 2

Introduction
In the second paragraph, in the tenth sentence of bullet point “Intrinsic procedures and modules”, after
“C_F_POINTER” add “and C_F_PROCPOINTER”.

In the second paragraph, in the last sentence of bullet point “Program units and procedures”, after
“dummy argument” add “, or a coarray ultimate component of a dummy argument,”.

5.4.7
Append a new sentence to the second paragraph:

“If a coarray is an unsaved local variable of a recursive procedure, its corresponding
coarrays are the ones at the same depth of recursion of that procedure on each image.”

9.7.1.2
Delete the last sentence in the third paragraph, that is “If the coarray … on those images.”, and
insert the following three sentences:

“If the coarray is a dummy argument, the ultimate arguments (15.5.2.3) on those images
shall be corresponding coarrays. If the coarray is an ultimate component of a dummy
argument, the ultimate arguments on those images shall be declared with the same
name in the same scoping unit. If the coarray is an unsaved local variable of a recursive
procedure, the execution of the ALLOCATE statement shall be at the same depth of
recursion of that procedure on every active image in the current team.”

10.1.11
At the end of the sixth paragraph, add the sentence:

“If a specification inquiry depends on the type of an object of derived type, that type
shall be previously defined.”

11.1.7.2
In the first sentence of constraint C1128, after “of finalizable type,” insert “shall not have an
allocatable ultimate component,”

12.6.2.1
After constraint C1213 insert a new constraint:

“C1213a A SIZE= specifier shall not appear in a list-directed or namelist input
statement.”

13.7.2.3.3
In table 13.1:

change row 1, column 1 from “Ew.d” to “Ew.d with w > 0”;
change row 3, column 1 from “Ew.d E0” to “Ew.d E0 or E0.d”;

ISO/IEC 1539-1:2018/Cor.2:2023(E)

2 © ISO/IEC 2023 – All rights reserved

change row 4, column 1 from “Dw.d” to “Dw.d with w > 0”;
add new row 5 with cells:

column 1: “D0.d”
column 2: “any”
column 3: “D±z1z2…zs or E±z1z2…zs”

13.7.2.3.4
In Table 13.2:

change row 1, column 1 from “ENw.d” to “ENw.d with w > 0”;
change row 3, column 1 from “ENw.d E0” to “ENw.d E0 or EN0.d”;

13.7.2.3.5
In Table 13.3:

change row 1, column 1 from “ESw.d” to “ESw.d with w > 0”;
change row 3, column 1 from “ESw.d E0” to “ESw.d E0 or ES0.d”;

15.4.3.4.2
In the final sentence of the first paragraph, after “(10.1.5)” insert “, treating a CLASS(*) dummy
argument as not differing in type or kind”.

15.5.2.11
In the second paragraph of the subclause delete the second and third sentences, that is “If the
dummy argument … array element order”. Insert a new (third) paragraph:

“If the dummy argument is not of type character with default or C character kind:
• if the actual argument is an array expression, the element sequence consists of the
elements in array element order;
• if the actual argument is an array element designator of a simply contiguous array, the
element sequence consists of that array element and each element that follows it in array
element order;
• otherwise, if the actual argument is scalar, the element sequence consists of that scalar.”

In the second bullet point of the third (now fourth) paragraph, after “substring designator”
insert “of a simply contiguous array”. In the third bullet point change “if the actual” to
“otherwise, if the actual” and delete “and not an array ... designator”.

15.5.2.13
In the first paragraph, at the end of item (3) (c) delete “or”.
At the end of item (3) (d) replace “image.” by “image, or
(e) the dummy argument has a coarray ultimate component and the action is a coindexed

definition of the corresponding coarray by a different image.”.

In the first paragraph, at the end of item (4) (c) delete “or”.
At the end of item (4) (d) replace “image.” by “image, or
(e) the dummy argument has a coarray ultimate component and the reference is a

coindexed reference of the corresponding coarray by a different image.”.

ISO/IEC 1539-1:2018/Cor.2:2023(E)

© ISO/IEC 2023 – All rights reserved 3

Replace the first sentence of NOTE 5 by:

“The exceptions to the aliasing restrictions for dummy arguments that are coarrays or
have coarray ultimate components enable cross-image access while the procedure is
executing.”

15.7
In the second paragraph, following NOTE 1 and before constraint C1590, add a new constraint:

C1589a A named local entity or construct entity of a pure subprogram shall not be of a
type that has default initialization of a data pointer component to a target at
any level of component selection.

In the second paragraph, following constraint C1599, add a new constraint:

C1599a A reference to the function C_FUNLOC from the intrinsic module
ISO_C_BINDING shall not appear in a pure subprogram if its argument is
impure.

16.9.46
In paragraph 3, Arguments, in the first sentence of the description for argument A delete
“dynamic”.

In the second sentence, after “It shall not be” insert “polymorphic or”.

In the third paragraph, at the end of the final sentence of the description for argument A add:
“, including (re)allocation of any allocatable ultimate component, and setting the dynamic type
of any polymorphic allocatable ultimate component”.

16.9.49
In paragraph 3, Arguments, after the first sentence of the description for argument A add the
new sentence:

“It shall not be of a type with an ultimate component that is allocatable or a pointer.”

In the same paragraph, in the first sentence of the description for argument OPERATION after
“nonallocatable, ” add “noncoarray, ”.

16.9.144
Add a new sentence to the end of the sixth paragraph:

“If the context of the reference to NULL is an actual argument corresponding to an
assumed-rank dummy argument, MOLD shall be present."

16.9.161
In paragraph 3, Arguments, in the first sentence of the description for argument OPERATION
before “nonpointer, ” add “noncoarray, ”.

ISO/IEC 1539-1:2018/Cor.2:2023(E)

4 © ISO/IEC 2023 – All rights reserved

17.10
In the third paragraph change the description of ES to read:

“ES indicates that the procedure is a pure elemental subroutine”

17.11.5
In paragraph 2, Class, change “Elemental” to “Pure elemental”.

17.11.6
In paragraph 2, Class, change “Elemental” to “Pure elemental”.

18.2.3.1
In the second sentence, change “C_F_POINTER subroutine is” to “C_F_POINTER and C_F_PROCPOINTER
subroutines are”.

18.2.3.4
In paragraph 2, Class, change “Pure subroutine” to “Subroutine”.

18.2.3.7
Replace paragraph 3, Argument, by:

Argument. X shall be a data entity with interoperable type and type parameters, and
shall not be an assumed-size array, an assumed-rank array that is associated with an
assumed-size array, an unallocated allocatable variable, or a pointer that is not
associated.

18.5.5.9
In paragraph 2, Formal Parameters, in the description of source, second sentence, delete
“elem_len, ” and delete the comma after “rank”.

After the same sentence, add a new sentence:

“If source is not a null pointer and the C descriptor with the address result does not
describe a deferred length character pointer, the corresponding values of the
elem_len member shall be the same in the C descriptors with the addresses source
and result.”

In paragraph 3, Description, first sentence, replace “base_addr and dim” by “base_addr,
dim, and possibly elem_len”.
At the end of the second bullet point of paragraph 3, Description, add the new sentence:

“If the C descriptor with the address result describes a character pointer of deferred
length, the value of its elem_len member is set to source->elem_len.”

C.6.8
In the second paragraph replace the entire sample program, that is:

PROGRAM ... END PROGRAM possibly_recoverable_simulation

ISO/IEC 1539-1:2018/Cor.2:2023(E)

© ISO/IEC 2023 – All rights reserved 5

by the following:

PROGRAM possibly_recoverable_simulation
 USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY:TEAM_TYPE, STAT_FAILED_IMAGE
 IMPLICIT NONE
 INTEGER, ALLOCATABLE :: failures (:) ! Indices of the failed images.
 INTEGER, ALLOCATABLE :: old_failures(:) ! Previous failures.
 INTEGER, ALLOCATABLE :: map(:) ! For each spare image k in use,
 ! map(k) holds the index of the failed image it replaces.
 INTEGER :: images_spare ! No. spare images.
 ! Not altered in main loop.
 INTEGER :: images_used [*] ! On image 1, max index of image in use.
 INTEGER :: failed ! Index of a failed image.
 INTEGER :: i, j, k ! Temporaries
 INTEGER :: status ! stat= value
 INTEGER :: team_number [*] ! 1 if in working team; 2 otherwise.
 INTEGER :: local_index [*] ! Index of the image in the team.
 TYPE (TEAM_TYPE) :: simulation_team
 LOGICAL :: done [*] ! True if computation finished on the image.

 ! Keep 1% spare images if we have a lot, just 1 if 10-199 images,
 ! 0 if <10.
 images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-9,1))
 images_used = NUM_IMAGES () - images_spare
 ALLOCATE (old_failures(0), map(images_used+1:NUM_IMAGES()))
 SYNC ALL (STAT=status)
 local_index = THIS_IMAGE ()
 team_number = MERGE (1, 2, local_index<=images_used[1])
 SYNC ALL (STAT = status)

 outer : DO
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 IF (IMAGE_STATUS (1) == STAT_FAILED_IMAGE) &
 ERROR STOP "cannot recover"
 IF (THIS_IMAGE () == 1) THEN
 ! For each newly failed image in team 1, move into team 1 a
 ! non-failed image of team 2.
 failures = FAILED_IMAGES () ! Note that the values
 ! returned by FAILED_IMAGES increase monotonically.
 k = images_used
 j = 1
 DO i = 1, SIZE (failures)
 IF (failures(i) > images_used) EXIT ! This failed image and
 ! all further failed images are in team 2 and do not matter.
 failed = failures(i)
 ! Check whether this is an old failed image.
 IF (j <= SIZE (old_failures)) THEN
 IF (failed == old_failures(j)) THEN
 j = j+1
 CYCLE ! No action needed for old failed image.
 END IF
 END IF
 ! Allow for the failed image being a replacement image.
 IF (failed > NUM_IMAGES()-images_spare) failed = map(failed)
 ! Seek a non-failed image

ISO/IEC 1539-1:2018/Cor.2:2023(E)

6 © ISO/IEC 2023 – All rights reserved

 DO k = k+1, NUM_IMAGES ()
 IF (IMAGE_STATUS (k) == 0) EXIT
 END DO
 IF (k > NUM_IMAGES ()) ERROR STOP "cannot recover"
 local_index [k] = failed
 team_number [k] = 1
 map(k) = failed
 END DO
 old_failures = failures
 images_used = k
 ! Find the local indices of team 2
 j = 0
 DO k = k+1, NUM_IMAGES ()
 IF (IMAGE_STATUS (k) == 0) THEN
 j = j+1
 local_index[k] = j
 END IF
 END DO
 END IF
 SYNC ALL (STAT = status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 !
 ! Set up a simulation team of constant size.
 ! Team 2 is the set of spares, so does not participate.
 FORM TEAM (team_number, simulation_team, NEW_INDEX=local_index, &
 STAT=status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 simulation : CHANGE TEAM (simulation_team, STAT=status)
 IF (status == STAT_FAILED_IMAGE) EXIT simulation
 IF (team_number == 1) THEN
 iter : DO
 CALL simulation_procedure (status, done)
 ! The simulation_procedure:
 ! - sets up and performs some part of the simulation;
 ! - starts from checkpoint data if these are available;
 ! - stores checkpoint data for all images from time to
 ! - time and always before return;
 ! - sets status from its internal synchronizations;
 ! - sets done to .TRUE. when the simulation has completed.
 IF (status == STAT_FAILED_IMAGE) THEN
 EXIT simulation
 ELSE IF (done) THEN
 EXIT iter
 END IF
 END DO iter
 END IF
 END TEAM (STAT=status) simulation

 SYNC ALL (STAT=status)
 IF (team_number == 2) done = done[1]
 IF (done) EXIT outer
 END DO outer
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) &
 PRINT *,'Unexpected failure',status
END PROGRAM possibly_recoverable_simulation

	Introduction
	In the second paragraph, in the tenth sentence of bullet point “Intrinsic procedures and modules”, after “C_F_POINTER” add “and C_F_PROCPOINTER”.
	In the second paragraph, in the last sentence of bullet point “Program units and procedures”, after “dummy argument” add “, or a coarray ultimate component of a dummy argument,”.
	5.4.7
	Append a new sentence to the second paragraph:
	“If a coarray is an unsaved local variable of a recursive procedure, its corresponding coarrays are the ones at the same depth of recursion of that procedure on each image.”
	9.7.1.2
	Delete the last sentence in the third paragraph, that is “If the coarray … on those images.”, and insert the following three sentences:
	“If the coarray is a dummy argument, the ultimate arguments (15.5.2.3) on those images shall be corresponding coarrays. If the coarray is an ultimate component of a dummy argument, the ultimate arguments on those images shall be declared with the same...
	10.1.11
	At the end of the sixth paragraph, add the sentence:
	“If a specification inquiry depends on the type of an object of derived type, that type shall be previously defined.”
	11.1.7.2
	In the first sentence of constraint C1128, after “of finalizable type,” insert “shall not have an allocatable ultimate component,”
	12.6.2.1
	After constraint C1213 insert a new constraint:
	“C1213a A SIZE= specifier shall not appear in a list-directed or namelist input statement.”
	13.7.2.3.3
	In table 13.1:
	change row 1, column 1 from “Ew.d” to “Ew.d with w > 0”;
	change row 3, column 1 from “Ew.d E0” to “Ew.d E0 or E0.d”;
	change row 4, column 1 from “Dw.d” to “Dw.d with w > 0”;
	add new row 5 with cells:
	column 1: “D0.d”
	column 2: “any”
	column 3: “D±z1z2…zs or E±z1z2…zs”
	13.7.2.3.4
	In Table 13.2:
	change row 1, column 1 from “ENw.d” to “ENw.d with w > 0”;
	change row 3, column 1 from “ENw.d E0” to “ENw.d E0 or EN0.d”;
	13.7.2.3.5
	In Table 13.3:
	change row 1, column 1 from “ESw.d” to “ESw.d with w > 0”;
	change row 3, column 1 from “ESw.d E0” to “ESw.d E0 or ES0.d”;
	15.4.3.4.2
	In the final sentence of the first paragraph, after “(10.1.5)” insert “, treating a CLASS(*) dummy argument as not differing in type or kind”.
	15.5.2.11
	In the second paragraph of the subclause delete the second and third sentences, that is “If the dummy argument … array element order”. Insert a new (third) paragraph:
	“If the dummy argument is not of type character with default or C character kind:
	• if the actual argument is an array expression, the element sequence consists of the elements in array element order;
	• if the actual argument is an array element designator of a simply contiguous array, the element sequence consists of that array element and each element that follows it in array element order;
	• otherwise, if the actual argument is scalar, the element sequence consists of that scalar.”
	In the second bullet point of the third (now fourth) paragraph, after “substring designator” insert “of a simply contiguous array”. In the third bullet point change “if the actual” to “otherwise, if the actual” and delete “and not an array ... design...
	15.5.2.13
	In the first paragraph, at the end of item (3) (c) delete “or”.
	At the end of item (3) (d) replace “image.” by “image, or
	(e) the dummy argument has a coarray ultimate component and the action is a coindexed definition of the corresponding coarray by a different image.”.
	In the first paragraph, at the end of item (4) (c) delete “or”.
	At the end of item (4) (d) replace “image.” by “image, or
	(e) the dummy argument has a coarray ultimate component and the reference is a coindexed reference of the corresponding coarray by a different image.”.
	Replace the first sentence of NOTE 5 by:
	“The exceptions to the aliasing restrictions for dummy arguments that are coarrays or have coarray ultimate components enable cross-image access while the procedure is executing.”
	15.7
	In the second paragraph, following NOTE 1 and before constraint C1590, add a new constraint:
	C1589a A named local entity or construct entity of a pure subprogram shall not be of a type that has default initialization of a data pointer component to a target at any level of component selection.
	In the second paragraph, following constraint C1599, add a new constraint:
	C1599a A reference to the function C_FUNLOC from the intrinsic module ISO_C_BINDING shall not appear in a pure subprogram if its argument is impure.
	16.9.46
	In paragraph 3, Arguments, in the first sentence of the description for argument A delete “dynamic”.
	In the second sentence, after “It shall not be” insert “polymorphic or”.
	In the third paragraph, at the end of the final sentence of the description for argument A add:
	“, including (re)allocation of any allocatable ultimate component, and setting the dynamic type of any polymorphic allocatable ultimate component”.
	16.9.49
	In paragraph 3, Arguments, after the first sentence of the description for argument A add the new sentence:
	“It shall not be of a type with an ultimate component that is allocatable or a pointer.”
	In the same paragraph, in the first sentence of the description for argument OPERATION after “nonallocatable, ” add “noncoarray, ”.
	16.9.144
	Add a new sentence to the end of the sixth paragraph:
	“If the context of the reference to NULL is an actual argument corresponding to an assumed-rank dummy argument, MOLD shall be present."
	16.9.161
	In paragraph 3, Arguments, in the first sentence of the description for argument OPERATION before “nonpointer, ” add “noncoarray, ”.
	In paragraph 3, Arguments, in the first sentence of the description for argument OPERATION before “nonpointer, ” add “noncoarray, ”.
	17.10
	In the third paragraph change the description of ES to read:
	“ES indicates that the procedure is a pure elemental subroutine”
	17.11.5
	In paragraph 2, Class, change “Elemental” to “Pure elemental”.
	17.11.6
	In paragraph 2, Class, change “Elemental” to “Pure elemental”.
	18.2.3.1
	In the second sentence, change “C_F_POINTER subroutine is” to “C_F_POINTER and C_F_PROCPOINTER subroutines are”.
	18.2.3.4
	In paragraph 2, Class, change “Pure subroutine” to “Subroutine”.
	18.2.3.7
	Replace paragraph 3, Argument, by:
	Argument. X shall be a data entity with interoperable type and type parameters, and shall not be an assumed-size array, an assumed-rank array that is associated with an assumed-size array, an unallocated allocatable variable, or a pointer that is not...
	18.5.5.9
	In paragraph 2, Formal Parameters, in the description of source, second sentence, delete “elem_len, ” and delete the comma after “rank”.
	In paragraph 2, Formal Parameters, in the description of source, second sentence, delete “elem_len, ” and delete the comma after “rank”.
	After the same sentence, add a new sentence:
	“If source is not a null pointer and the C descriptor with the address result does not describe a deferred length character pointer, the corresponding values of the elem_len member shall be the same in the C descriptors with the addresses source and r...
	In paragraph 3, Description, first sentence, replace “base_addr and dim” by “base_addr, dim, and possibly elem_len”.
	In paragraph 3, Description, first sentence, replace “base_addr and dim” by “base_addr, dim, and possibly elem_len”.
	At the end of the second bullet point of paragraph 3, Description, add the new sentence:
	“If the C descriptor with the address result describes a character pointer of deferred length, the value of its elem_len member is set to source->elem_len.”
	C.6.8
	In the second paragraph replace the entire sample program, that is:
	PROGRAM ... END PROGRAM possibly_recoverable_simulation
	by the following:
	PROGRAM possibly_recoverable_simulation
	USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY:TEAM_TYPE, STAT_FAILED_IMAGE
	IMPLICIT NONE
	INTEGER, ALLOCATABLE :: failures (:) ! Indices of the failed images.
	INTEGER, ALLOCATABLE :: old_failures(:) ! Previous failures.
	INTEGER, ALLOCATABLE :: map(:) ! For each spare image k in use,
	! map(k) holds the index of the failed image it replaces.
	INTEGER :: images_spare ! No. spare images.
	! Not altered in main loop.
	INTEGER :: images_used [*] ! On image 1, max index of image in use.
	INTEGER :: failed ! Index of a failed image.
	INTEGER :: i, j, k ! Temporaries
	INTEGER :: status ! stat= value
	INTEGER :: team_number [*] ! 1 if in working team; 2 otherwise.
	INTEGER :: local_index [*] ! Index of the image in the team.
	TYPE (TEAM_TYPE) :: simulation_team
	LOGICAL :: done [*] ! True if computation finished on the image.
	! Keep 1% spare images if we have a lot, just 1 if 10-199 images,
	! 0 if <10.
	images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-9,1))
	images_used = NUM_IMAGES () - images_spare
	ALLOCATE (old_failures(0), map(images_used+1:NUM_IMAGES()))
	SYNC ALL (STAT=status)
	local_index = THIS_IMAGE ()
	team_number = MERGE (1, 2, local_index<=images_used[1])
	SYNC ALL (STAT = status)
	outer : DO
	IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
	IF (IMAGE_STATUS (1) == STAT_FAILED_IMAGE) &
	ERROR STOP "cannot recover"
	IF (THIS_IMAGE () == 1) THEN
	! For each newly failed image in team 1, move into team 1 a
	! non-failed image of team 2.
	failures = FAILED_IMAGES () ! Note that the values
	! returned by FAILED_IMAGES increase monotonically.
	k = images_used
	j = 1
	DO i = 1, SIZE (failures)
	IF (failures(i) > images_used) EXIT ! This failed image and
	! all further failed images are in team 2 and do not matter.
	failed = failures(i)
	! Check whether this is an old failed image.
	IF (j <= SIZE (old_failures)) THEN
	IF (failed == old_failures(j)) THEN
	j = j+1
	CYCLE ! No action needed for old failed image.
	END IF
	END IF
	! Allow for the failed image being a replacement image.
	IF (failed > NUM_IMAGES()-images_spare) failed = map(failed)
	! Seek a non-failed image
	DO k = k+1, NUM_IMAGES ()
	IF (IMAGE_STATUS (k) == 0) EXIT
	END DO
	IF (k > NUM_IMAGES ()) ERROR STOP "cannot recover"
	local_index [k] = failed
	team_number [k] = 1
	map(k) = failed
	END DO
	old_failures = failures
	images_used = k
	! Find the local indices of team 2
	j = 0
	DO k = k+1, NUM_IMAGES ()
	IF (IMAGE_STATUS (k) == 0) THEN
	j = j+1
	local_index[k] = j
	END IF
	END DO
	END IF
	SYNC ALL (STAT = status)
	IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
	!
	! Set up a simulation team of constant size.
	! Team 2 is the set of spares, so does not participate.
	FORM TEAM (team_number, simulation_team, NEW_INDEX=local_index, &
	STAT=status)
	IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
	simulation : CHANGE TEAM (simulation_team, STAT=status)
	IF (status == STAT_FAILED_IMAGE) EXIT simulation
	IF (team_number == 1) THEN
	iter : DO
	CALL simulation_procedure (status, done)
	! The simulation_procedure:
	! - sets up and performs some part of the simulation;
	! - starts from checkpoint data if these are available;
	! - stores checkpoint data for all images from time to
	! - time and always before return;
	! - sets status from its internal synchronizations;
	! - sets done to .TRUE. when the simulation has completed.
	IF (status == STAT_FAILED_IMAGE) THEN
	EXIT simulation
	ELSE IF (done) THEN
	EXIT iter
	END IF
	END DO iter
	END IF
	END TEAM (STAT=status) simulation
	SYNC ALL (STAT=status)
	IF (team_number == 2) done = done[1]
	IF (done) EXIT outer
	END DO outer
	IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) &
	PRINT *,'Unexpected failure',status
	END PROGRAM possibly_recoverable_simulation

