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Replace Table 11.3 with: 

Table 11.3 — Syntax of block_data 

Syntax No. of bits Mnemonic 
block_data()   
{   
 block_type; 1 uimsbf 
 if (block_type == 0) {   
  const_block; 1 uimsbf 
  js_block; 1 uimsbf 
   (reserved) 5  
  if (const_block == 1) {   
  {   
   if (resolution == 0) {      // 8 bits   
    const_val; 8 simsbf 
   }   
   else if (resolution == 1) {     // 
16 bits 

  

    const_val; 16 simsbf 
   }   
   else if (resolution == 2 || floating == 1) { // 24 bits   
    const_val; 24 simsbf 
   }   
   else {          // 32 bits   
    const_val; 32 simsbf 
   }   
  }   
 }   
 else {   
  js_block; 1 uimsbf 
  if ((bgmc_mode == 0) && (sb_part == 0) {   
   sub_blocks = 1;   
  }   
  else if ((bgmc_mode == 1) && (sb_part ==1) {   
   ec_sub; 2 uimsbf 
   sub_blocks = 1 << ec_sub;   
  }   
  else {   
   ec_sub; 1 uimsbf 
   sub_blocks = (ec_sub == 1) ? 4 : 1;   
  }   
  if (bgmc_mode == 0) {   
   for (k = 0; k < sub_blocks; k++) {   
    s[k]; varies Rice code 
   }   
  }   
  else {   
   for (k = 0; k < sub_blocks; k++) {   
    s[k],sx[k]; varies Rice code 
   }   
  }   
  sb_length = block_length / sub_blocks;   
  shift_lsbs; 1 uimsbf 
  if (shift_lsbs == 1) {   
   shift_pos; 4 uimsbf 
  }   
  if (!RLSLMS) {   
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Syntax No. of bits Mnemonic 
   if (adapt_order == 1) {   
    opt_order; 1..10 uimsbf 
   }   
   else {   
    opt_order = max_order;   
   }   
   for (p = 0; p < opt_order; p++) {   
    quant_cof[p]; varies Rice code 
   }   
  } else {   
   opt_order = 10; // for RLSLMS   
  }   
  if (long_term_prediction) {    
   LTPenable; 1 uimsbf 
   if (LTPenable) {   
    for (i = -2; i <= 2; i++) {   
     LTPgain[i]; varies Rice code 
    }   
    LTPlag; 8,9,10 uimsbf 
   }   
  }   
  start = 0;   
  if (random_access_block) {   
   start = min(opt_order, min(block_length, 3));   
   if (start > 0) {   
    smp_val[0]; varies Rice code 
   }   
   if (start > 1) {   
    res[1]; varies Rice code 
   }   
   if (start > 2) {   
    res[2]; varies Rice code 
   }   
  }   
  if (bgmc_mode) {   
   for (n = start; n < sb_length; n++) {   
    msb[n]; varies BGMC 
   }   
   for (k=1; k < sub_blocks; k++) {   
    for (n = k * sb_length; n < (k+1) * sb_length; n++) {   
     msb[n]; varies BGMC 
    }   
   }   
   for (n = start; n < sb_length; n++) {   
    if (msb[n] != tail_code) {   
     lsb[n]; varies uimsbf 
    }   
    else {   
     tail[n]; varies Rice code 
    }   
   }   
   for (k=1; k < sub_blocks; k++) {   
    for (n = k * sb_length; n < (k+1) * sb_length; n++) {   
     if (msb[n] != tail_code) {   
       lsb[n]; varies uimsbf 
     }   
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Syntax No. of bits Mnemonic 
     else {   
       tail[n]; varies Rice code 
     }   
    }   
   }   
  }   
  Else   
  {   
   for (n = start; n < block_length; n++) {   
    res[n]; varies Rice code 
   }   
  }   
 }   
 if (RLSLMS) {   
              RLSLMS_extension_data()   
 }   
 if (!mc_coding || js_switch) {   
  byte_align; 0..7 bslbf 
 }   
}   

Note: random_access_block is true if the current block belongs to a random access frame (frame_id % 
random_access == 0) and is the first (or only) block of a channel in this frame. If non-adaptive prediction order 
is used (adapt_order == 0), then in random access frames the block length switching must be constrained so 
that no blocks in the frame need samples from the previous frame for the prediction process. The condition 
start <= sb_length must be true in all frames. If mc_coding is used, prohibit the use of zero block and const 
block (block_type == 0) as a slave channel, but permit it as a master channel. RLSLMS shall not be used 
together with block_switching  and mc_coding. 
 
 
In 11.4.3 Payloads for Floating-Point Data, replace Note after Table 11.6 Syntax of diff_float_data (changes 
highlighted): 
 
Note: “byte_align” stands for padding of bits to the next byte boundary. "FlushDict()" is the function that clears 
and initializes the dictionary and variables of the Masked-LZ decompression module (see subclause 11.6.9). 

with: 

Note: “random_access_block” is defined as (random_access != 0 && (frame_id % random_access ==0)). 
“byte_align” stands for padding of bits to the next byte boundary. "FlushDict()" is the function that clears and 
initializes the dictionary and variables of the Masked-LZ decompression module (see 11.6.9). 
 

Replace Table 11.8 with: 

Table 11.8 — Syntax of Masked_LZ_decompression 

Syntax No. of bits Mnemonic 
Masked_LZ_decompression(nchars)   
{   
 for (dec_chars = 0; dec_chars < nchars; ) {   
  string_code; 9..15 uimsbf 
 }   
}   

Note: “nchars” is the number of characters to be decoded (see 11.6.9).  
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Replace Table 11.14 with: 

Table 11.14 — Elements of diff_float_data 

Field #Bits Description / Values 

use_acf 1 1: acf_flag[c] is present 

0: acf_flag[c] is not present 

acf_flag[c] 1 1: acf_mantissa[c] is present 

0: acf_mantissa[c] is not present 

acf_mantissa[c] 23 Full mantissa data of common multiplier 

highest_byte[c] 2 Highest nonzero bytes of mantissa in a frame 

partA_flag[c] 1 1: Samples exist in Part-A 

0: No sample exists or all zero in Part-A 

shift_amp[c] 1 1: shift_value[c] is present 

0: shift_value[c] is not present 

shift_value[c] 8 Shift value: The shift value is biased by 127. 
The value (shift_value[c]-127) is added to the 
exponent of all floating-point values of 
channel c after conversion of decoded integer 
to floating-point values, and before addition of 
integer and the difference data.  

 

In 11.6.9.1 Encoder for Floating-Point data, replace following sentences (changes highlighted): 
 
If the input signal is 32-bit floating-point, input values are decomposed as shown in 11.14 into three parts: An 
estimated common multiplier A, a truncated integer multiplicand sequence Y, and a difference signal Z. The 
same compression scheme as for normal integer input is applied for the truncated and normalized integer 
multiplicand sequence. 

with: 

If the input signal is 32-bit floating-point, input values are decomposed as shown in 11.14 into three parts: An 
estimated common multiplier A, a 24-bit truncated integer multiplicand sequence Y, and a difference signal Z. 
The same compression scheme as for normal 24-bit integer input is applied for the truncated and normalized 
integer multiplicand sequence. 
 
 
In 11.6.9.3.2.2 Normalization parameters, replace the first sentence of the second paragraph (changes 
highlighted): 
 
First, use_acd is decoded. 

with: 

First, use_acf is decoded. 
 
 
In 11.6.9.3.2.5 Masked-LZ decompression, replace the first sentence of the third paragraph (changes 
highlighted): 
 
The range of the code_bits is varied from 9 to 14 bits, since the index of the dictionary is coded as 9 to 15 bits 
depending on the number of the entries stored in the dictionary. 

with: 

The range of code_bits is varied from 9 to 15 bits, since the index of the dictionary is coded as 9 to 15 bits 
depending on the number of the entries stored in the dictionary. 
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and the first sentence of the fourth paragraph: 

The deocder reads (code_bits) bits from bit stream, and gets string_code. 

with: 

The decoder reads (code_bits) bits from bit stream, and gets string_code. 
 
 
Replace 11.6.9.3.3.3 Multiplication of the common multiplier with:  
 
After conversion, the common multiplier A is reconstructed from acf_mantissa[c] and multiplied to F[c][n], and 
the result is set to F[c][n]. The computing procedure of multiplication is as follows. 

Step 1: Sign bit setting: 
The sign of the result is the same as that of F[c][n]. 

Step 2: Multiplication of mantissa: 
(acf_mantissa[c] | 0x0800000) is multiplied to (mantissa bits of F[c][n] | 0x0800000) in a 64-
bit integer resister. 

Step 3: Normalization: 
The result of 64-bit integer multiplication is normalized to 24-bit precision, and represented 
with 23 bits after discarding the top bit. 
Since 1.0 <= (acf_mantissa[c] | 0x0800000)*2-23, (mantissa part of F[c][n] | 0x0800000) 
*2-23 < 2.0, the result of the multiplication is in the range [1, 4). 
Consequently, it might be necessary to normalize by repeatedly shifting one bit to the right 
and incrementing the exponent. 

Step 4: Rounding; 
The rounding mode "round to nearest, to even when tie" is applied to round off the 
normalized mantissa of the result. Normalization process might be needed after the 
rounding. 

 
 
Replace 11.6.9.3.3.4 Addition of difference value of mantissa with: 
 
After the multiplication, the reconstructed difference value of the mantissa D[c][n] is added to the floating-point 
data F[c][n], and the result is set to F[c][n]. The computing procedure of addition is as follows. 

Step 1: Addition of mantissa: 
(D[c][n]) is added to (mantissa bits of F[c][n] | 0x0800000) in a 32-bit integer resister. 

Step 2: Normalization: 
The result of 32-bit integer addition is normalized to 24-bit precision, and represented with 
23 bits after discarding the top bit. 
Since (D[c][n])*2-23 < 1.0, and 1.0 <= (mantissa part of F[c][n] | 0x0800000) *2-23 < 2.0, the 
result of the multiplication is in the range [1, 3). 
Consequently, it might be necessary to normalize by repeatedly shifting one bit to the right 
and incrementing the exponent. 

Step 4: Truncation: 
The rounding is not needed for this addition because whenever shifting occurs, the LSB of 
the resulting mantissa equals 0. 

 


