INTERNATIONAL STANDARD ISO/IEC 23003-3:2012
TECHNICAL CORRIGENDUM 1

Published 2012-09-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION o MEXOYHAPOOHAA OPTAHU3ALIMA MO CTAHOAPTUSALIMKA o ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION . MEXOYHAPOOHAA SNEKTPOTEXHUYECKAA KOMUCCKA . COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Information technology — MPEG audio technologies —

Part 3:
Unified speech and audio coding

TECHNICAL CORRIGENDUM 1

Technologies de l'information — Technologies audio MPEG —

Partie 3: Discours unifié et codage audio

RECTIFICATIF TECHNIQUE 1

Technical Corrigendum 1 to ISO/IEC 23003-3:2012 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

In 3.2 add at the end:

v[] = {a} This expression indicates that all elements of the array v shall be set to the value a.

ICS 35.040 Ref. No. ISO/IEC 23003-3:2012/Cor.1:2012(E)

© ISO/IEC 2012 — All rights reserved

Published in Switzerland

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 4.1 replace the diagram:

(Time-
warped)

Block
Switching

Filter Bank

with:

(Time-
warped)

Block
Switching

Filter Bank

Transition
Windowing [&

4

A sbrRatio

2 © ISO/IEC 2012 - All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 4.2. replace:

The filterbank / block switching tool applies the inverse of the frequency mapping that was carried out in the
encoder. An inverse modified discrete cosine transform (IMDCT) is used for the filterbank tool. The IMDCT
can be configured to support 120, 128, 240, 256, 480, 512, 960 or 1024 spectral coefficients.

with:

The filterbank / block switching tool applies the inverse of the frequency mapping that was carried out in the
encoder. An inverse modified discrete cosine transform (IMDCT) is used for the filterbank tool. The IMDCT
can be configured to support 96, 128, 192, 256, 384, 512, 768, or 1024 spectral coefficients.

In 5.2 in Table 6, replace:

[...]
case: ID_USAC_EXT
UsacExtElementConfig();
break;
}
}
NOTE: UsacSingleChannelElementConfig(), UsacChannelPairElementConfig(), UsacLfeElement-
Config() and UsacExtElementConfig() signaled at position elemldx refer to the corresponding
elements in UsacFrame() at the respective position elemldx.

with

case: ID_USAC_EXT
UsacExtElementConfig();
break;

}
}
NOTE: UsacSingleChannelElementConfig(), UsacChannelPairElementConfig(), UsacLfeElement-
Config() and UsacExtElementConfig() signaled at position elemldx refer to the corresponding
elements in UsacFrame() at the respective position elemldx.

In 6.3.1 in Table 17 replace:

[...]
case: ID_USAC_EXT
UsacExtElement(usacindependencyFlag);

break;
}
}
with
[...]
case: ID_USAC_EXT
UsacExtElement(usacindependencyFlag);
break;
}
}
}

© ISO/IEC 2012 - Al rights reserved 3

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 5.3.1 in Table 21 replace:

[...]
if (usacExtElementUseDefaultLength) {
usacExtElementPayloadLength = usacExtElementDefaultLength;
}else {
usacExtElementPayloadLength = escapedValue(8,16,0);

}

[...]
with:

[...]
if (usacExtElementUseDefaultLength) {
usacExtElementPayloadLength = usacExtElementDefaultLength;

}else {
usacExtElementPayloadLength; 8 uimsbf
if (usacExtElementPayloadLength==255) {
valueAdd 16 uimsbf

usacExtElementPayloadLength += valueAdd - 2;

[.]

In 6.3.2 in Table 23 replace:

[...]
if (nrChannels == 2) {
StereoCoreToollnfo(core_mode);

}
[.]

with

[...]
if (nrChannels == 2) {
StereoCoreToollnfo(core_mode, indepFlag);

}
[...]

In 5.3.2 in Table 24 replace:

Syntax No. of bits Mnemonic
StereoCoreToollnfo(core_mode)
{
if (core_mode[0] == 0 && core_mode[1] == 0) {
tns_active; 1 uimsbf
common_window; 1 uimsbf
if (common_window) {
ics_info();
common_max_sfb; 1 uimsbf

if (common_max_sfb == 0) {

4 © ISO/IEC 2012 - All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

if (window_sequence == EIGHT_SHORT_SEQUENCE) {

max_sfb1; 4 uimsbf
}else {
max_sfb1; 6 uimsbf
}
}else {
max_sfb1 = max_sfb;
}
max_sfb_ste = max(max_sfb, max_sfb1);
ms_mask_present; 2 uimsbf
if (ms_mask_present==1){
for (g = 0; g < num_window_groups; g++) {
for (sfb = 0; sfb < max_sfb; sfb++) {
ms_used[g][sfb]; 1 uimsbf
}
}
}

if (ms_mask_present == 3) {
cplx_pred_data();

}else {
alpha_q_re[g][sfb] = O;
alpha_q_imI[g][sfb] = 0;

}
}
[...]
with
Syntax No. of bits Mnemonic
StereoCoreToollnfo(core_mode, indepFlag)
{
if (core_mode[0] == 0 && core_mode[1] == 0) {
tns_active; 1 uimsbf
common_window; 1 uimsbf
if (common_window) {
ics_info();
common_max_sfb; 1 uimsbf

if (common_max_sfb == 0) {
if (window_sequence == EIGHT_SHORT_SEQUENCE) {

max_sfb1; 4 uimsbf
}else {
max_sfb1; 6 uimsbf
}
}else {
max_sfb1 = max_sfb;
}
max_sfb_ste = max(max_sfb, max_sfb1);
ms_mask_present; 2 uimsbf
if (ms_mask_present==1){
for (g = 0; g < num_window_groups; g++) {
for (sfb = 0; sfb < max_sfb_ste; sfb++) {
ms_used[g][sfb]; 1 uimsbf
}
}
}

if (ms_mask_present == 3) {
cplx_pred_data(max_sfb_ste, indepFlag);
}else {

© ISO/IEC 2012 - Al rights reserved 5

ISO/IEC 23003-3:2012/Cor.1:2012(E)

alpha_qg_re[l] = {0};
alpha_qg_im(][] = {0};

[..]

In 5.3.2 in Table 38 — Syntax of arith_data, replace:
pki = arith_get_pk(c + esc_nb<<17)
with:

pki = arith_get_pk(c + (esc_nb<<17));

In 6.1.1.1 replace:

usacSamplingFrequency Output sampling frequency of the decoder coded as unsigned integer value in
case usacSamplingFrequencylndex equals zero.

with:

usacSamplingFrequency Output sampling frequency of the decoder coded as unsigned integer value in
case usacSamplingFrequencylndex is equal to the escape value.

In 6.1.1.1 add definition of bs_pvc by replacing:

bs_interTes This flag signals the usage of the inter-TES tool in SBR.
with

bs_interTes This flag signals the usage of the inter-TES tool in SBR.
bs_pvc This flag signals the usage of the PVC tool in SBR.

In 6.1.1.2, replace:

bsStereoSbr This flag signals the usage of the stereo SBR in combination with MPEG
Surround decoding.

with

bsStereoSbr This flag signals the usage of the stereo SBR in combination with MPEG
Surround decoding. The value of bsStereoSbr is defined by stereoConfigIndex
(see Table 72).

6 © ISO/IEC 2012 - All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 6.2.9.2.1 and in the headline of 6.2.9.2.3 replace:

scalefactor data
with

scale factor data

In 6.2.9.2.4 replace
fd_channelffeh_stream()
with

fd_channel_stream()

In 6.2.9.4 replace:

As explain in ISO/IEC 14496-3:2009, 4.5.2.3.4, the width of the scalefactor bands is built in imitation of the
critical bands of the human auditory system. For that reason the number of scalefactor bands in a spectrum
and their width depend on the transform length and the sampling frequency. Table 4.129 to Table 4.147, in
ISO/IEC 14496-3:2009, 4.5.4, list the offset to the beginning of each scalefactor band on the transform
lengths 1024 (960) and 128 (120) and on the sampling frequencies.

For a transform length of 768 samples, the scale factor bands at 4 /3 - samplingfr equency are used. In case
a shorter transform length (dependent on coreCoderFramelLength) is used, swb_offset long_window and
swb_offset_short_window are limited to the size of the transform length, and num_swb _long window and
num_swb_short_window is determined according to the following pseudo code

with:

As explained in ISO/IEC 14496-3:2009, 4.5.2.3.4, the width of the scalefactor bands is built in imitation of the
critical bands of the human auditory system. For that reason the number of scalefactor bands in a spectrum
and their width depend on the transform length and the sampling frequency. Table 4.129 to Table 4.147, in
ISO/IEC 14496-3:2009, 4.5.4, list the offset to the beginning of each scalefactor band on the transform
lengths 1024 and 128 and on the sampling frequencies (window length of 2048 and 256).

For a transform length of 768 samples, the same 1024-based scalefactor band tables are used, but those
corresponding to 4/3-samplingfr equency . In case a shorter transform length (dependent on
coreCoderFramelLength) is used, swb_offset long_window and swb_offset_short_window are limited to the
size of the transform length, and num_swb long window and num_swb_short window is determined
according to the following pseudo code:

In 6.2.13.2 replace the text block:
bsOttBandsPhase defines the number of IPD parameter bands. If bsOttBandsPhasePresent==0, ...
with:

bsOttBandsPhase defines the number of MPS parameter bands where phase coding is used. If
bsOttBandsPhasePresent==0, ...

© ISO/IEC 2012 — Al rights reserved 7

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 7.4.3 replace the pseudo code:

/*Input variables*/

c /* old state context */
i /* Index of the 2-tuple to decode in the vector */
N /* Window Length */
/*Output value*x/
c /*updated state context*/
c = arith get context(c,i,N) {
c = c>>4;

if (i<N/4-1)
c =c + (g[0][i+1]<<12);
c = (c&OXFFFO) ;
if (i>0)
c=c+ (q[l][i-1]);
if (1 > 3) {
if ((gq[l]1[i-3]1 + qll]l[i-2] + g[1][i-1]) < 5)
return (c+0x10000) ;
}

return (c);

with:

/*Input variables*/

c /* old state context */

i /* Index of the 2-tuple to decode in the vector */
N /* Window Length */

/*Output valuex/

c /*updated state context*/

c = arith get context(c,i,N) {
c = (c & OxFFFF)>>4;

if (i<N/4-1)

c =c + (qg[0][i+1]<<12);
c = (c&O0xXFFFO) ;
if (i>0)

c = + (ql11[i-11);

c

if (1 > 3) |

if ((g[1]1[i-3] + g[1]1[i-2] + qll][i-1]) < 5)
return (c+0x10000) ;

}

return (c);

Further in 7.4.3 replace the following pseudo code:

/*input variables*/

offset /* number of decoded 2-tuples */
N /* Window length */
x_ac_dec /* vector of decoded spectal coefficients */

arith finish(x ace dec,offset,N)
{
for (i=offset ;i<N/4;i++) {
x_ac_dec[2*i] = 0;
x_ac_dec[2*i+1l] = 0;
qlllli] = 1;

with:

/*helper function*/
void arith rewind bitstream(offset);

/* move the bitstream position indicator backward by ‘offset’ bits*/

/*input variables*/

offset /* number of decoded 2-tuples */
N /* Window length */
x_ac_dec /* vector of decoded spectal coefficients */

© ISO/IEC 2012 - All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

arith finish(x ace dec,offset,N)
{

arith rewind bitstream(14);

for (i=offset ;i<N/4;i++) {
x ac dec[2*1] = 0;
x_ac_dec[2*i+l] = 0;
qll]l[i]l = 1;

In 7.4.3 in function arith decode (), replace:

value = (val<<l)..
with:
value = (value<<l)..

Further in 7.4.3, replace:
high = low +(range*cum freq[symbol-1])>>14 - 1
with:

high

low +((range*cum freq[symbol-1])>>14) - 1;

In 7.4.3 replace:
...with the value c&esc_nb<<17 as input argument,...
with

...with the value ¢ + (esc_nb<<17) as input argument,...

In 7.4.3 replace:
...the function get_pk()...
with:

...the function arith_get_pk()...

Also in 7.4.3 replace:
...If the condition (esc_nb>0 && m==0) is true ...
with:

...If the condition (m==0 && lev>0) is true,...

© ISO/IEC 2012 - Al rights reserved 9

ISO/IEC 23003-3:2012/Cor.1:2012(E)

Further down in the same subclause 7.4.3, replace:
arith finish(x ace dec,offset,N)
with:

arith finish(x ac dec,offset,N)

In 7.5.1 replace:

The general description of the SBR tool can be found in ISO/IEC 14496-3:2009, 4.6.18.
The above mentioned SBR tool shall be modified as described below.

with:

The general description of the SBR tool can be found in ISO/IEC 14496-3:2009, 4.6.18.

The complex-exponential phase-shifting is outlined in ISO/IEC 14496-3:2009, 4.6.18.4.4. In USAC it shall be
fixed to the default standard operation as defined in 4.6.18.4.1.

The above mentioned SBR tool shall be modified as described below.

In 7.5.1.1 add the following line:

numTimeSlots number of SBR envelope time slots; is always 16.

In 7.5.1.4 replace:

Within one SBR frame there can be either one or two noise floors. The noise floor time borders are derived
from the SBR envelope time border vector according to: ...

with:

Independent of bs_pvc_mode within one SBR frame there can be either one or two noise floors.
If bs_pvc_mode is zero, the noise floor time borders are derived from the SBR envelope time border vector
according to: ...

In 7.5.1.5.2 replace the following text:

If bs_pvc_mode in not zero, the SBR envelope time border vector of the current SBR frame, t¢ is calculated
according to:

[bs_var_len', numTimeSlots + bs_var_len] ,bs num_env=1

£ {[bs_var_len’, bs_noise position, numTimeSlots + bs_var_len] ,bs num_env=2

where
bs var len 'is bs var len of the previous SBR frame.
1 if bs_noise_position =0

bs num _env= .
2 otherwise

with:

If bs_pvc_mode is not zero, the SBR envelope time border vector of the current SBR frame, t¢ is calculated
according to:

10 © ISO/IEC 2012 — All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

1 if bs_noise position =0
2 otherwise

¢ [var_len', numTimeSots +bs_var_len| Ly =
£ [var_len', bs_noise_position, numT: imeSlots+bs_var_len] ,Lg =2
where

var_len'=t', [L', |—numTimeSlds and t'; is the time border vector t of the previous SBR frame and

L'E is the number of envelopes of the previous frame respectively. Note that if bs_pvc_mode'==1 (PVC active
in previous frame), it follows that var_len' is bs_var_len of the previous SBR frame.

In the same subclause 7.5.1.5.2 replace:

If bs_pvc_mode is not zero, the PVC SBR envelope time border vector of the current SBR frame, tepyc, is
calculated according to:

[tﬁm, numTimeSlots] ,bs num_env=1
topye = . . .
[t > DS_N0OISE_position, numT. zmeSlots] , bs_ num_env =2
where
, bs var _bord I' , bs pvc_mode'=0 and bs_pvc_mode # 0
first = , otherwise
with:

If bs_pvc_mode is not zero, the PVC SBR envelope time border vector of the current SBR frame, tgpyc, is
calculated according to:

- [tﬁm, numTimeSlots] , L, =1
[tﬁm,bs_noise_position, numTimeSlots] , L, =2
where
A {Var_len' , bs pvc mode' =0 and bs pvc mode # 0
st , otherwise

and var_len'=t',[L'. |—numTimeSIlds and t'; is the time border vector t of the previous SBR frame

and L'E is the number of envelopes of the previous frame respectively.

In the same subclause 7.5.1.5.2 replace:

If bs_pvc_mode is not zero, the noise floor time borders vectors of the current SBR frame, tq is calculated
according to:

B [tE (0),t, (1)] ,bs_num_noise =1
¢ [t,(0),t,(1),t,(2)] ,bs_num_noise =2

where

) 1 if bs_noise_position =0
bs _num_noise = -
otherwise

© ISO/IEC 2012 — All rights reserved 11

ISO/IEC 23003-3:2012/Cor.1:2012(E)

with:

If bs_pvc_mode is not zero, the noise floor time borders vectors of the current SBR frame, tq is calculated
according to:

L,=L,
_ [tE(O):tE(l)] ,LQ =
R RORRONAE) L, =2

In 7.5.1.5.2 on page 96 replace equations as follows:

else, bs_pvc_mode is not zero,

' u, =F(i+1r()
S viappea (M =k, 1) =8 (0,1),[, <m <u,,

1 =¥(,r(l))
for 0<i <n(r(l)),t, ()<t <t (+1),0<I<L,

where

5 (i.0) 1 .le {SMdexMapped(j—kx,t):F(i,r(l))Sj<F(i+l,r(l)),tE(l)£t<tE(l+1),O£Z<LE}
s L =
0 ,otherwise

with:

else, bs_pvc_mode is not zero,

. u, =F@i+1,r())
SMapped(m _kxat) = Ss(l;t),ll- <m< u;,

1 =F(i,r())
for 0 <7 <n(r(l)), € gy () <t <ty +1D,0<I<L,

where

5 (1) = {1 L€ {8 ntped (G = k) T FEE(D) < j < FG+LTD), e () SE< by (1+1),0<I< L)

0 ,otherwise

In 7.5.1.5.2 replace the equation of Q Mapped in case of pvc_mode is not zero as follows.Replace:

Q' srortapped (M =kt + numTimeSlots) , 0<t <t (L';)—numTimeSlots

Qvpea M=k 1) =
Hopped ' QPreMapped (m - kx 4 t) > tE (0) <t< tE (LE)
with:

QMapped (m - kx b t) = {

Q' ertappea (M =k ot + numTimeSlots) , 0 <t <t;(0)
QPreMapped (m - kx’ t) 5 tE (0) <t< tE (LE)

12 © ISO/IEC 2012 — All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 7.5.1.5.2 replace the equation for S in case of pvc_mode is not zero as follows. Replace:

IndexMapped

S' 1ndexprestapped (M — k.t + numTimeSlots), 0 <t <t', (L',) — numTimeSlots

Sn exMappe (m_kx’t):
dextionped {S[ndavPreMapped (m - kx b t) s tE (0) <t< tE (LE)

with:

S' 1ndexpreappea (M — kst + numTimeSlots), 0 <t <t (0)
S[ndexMapped (m - kx ’ t) =

SIndexPreMapped (m _kx’t) ’tE (O) <t< tE (LE)

In 7.5.1.5.4 replace equations as follows:

else, bs_pvc_mode is not zero,

m,t
Q,, (m,t) = EO@MWM(mJ)-()MWm() O<m<M,t,()<t<t, (I+1),0<I<L,
1+ Q e (M51)
with:
else, bs_pvc_mode is not zero,
Q 1appea (M51)
m,t)= |E . m,t)- i ,
QM () \/ OrigMapped () 1 4 QMapped (m’ t)
0<m<M,
toppe (D) St <ty (I+1),
0<I<L,

Further, replace:

else, bs_pvc_mode is not zero,

S judexstappea (M>1)
S (m.t)= |E, . 1) - dndexappe 0<m<M.t ()<t <t (I+1)0<I<L
M(m) \/ OrigMapped (m) 1+QMapped (m,t) E() E() E

with:

else, bs_pvc_mode is not zero,

S IndexMapped (mﬂ t)

SM (m’t) = \/EOrigMapped (m?t)

1+QMapped (m’t) ,
0<m<M,
tEPVC (l) st< tEPVC (l + 1)9
0<I<L,

© ISO/IEC 2012 — All rights reserved 13

ISO/IEC 23003-3:2012/Cor.1:2012(E)

In 7.5.2.2 replace:
pobfit (3, ky,x _lowband ,lowEnv, lowEnvSlope);

with:
polyfit (3, ky,x_lowband, lowEnv,polyCoeﬁ"s);
3
lowEnvSlope(k) = ZpolyCoeﬁ‘sG —i)-x_lowband (k)

i=0

In 7.5.5.2 replace:

¢.(0,0)
numTimeSlots - RATE + 6

lowEnv(k)=lOloglO(j ,0<k<k,
with:

¢, (0,0)
(numTimeSlots +3) - RATE

lowEnv(k)lelogm[J L0k <k,

In 7.5.6.3 replace

RATE—14t 156,

> X, (ib,RATE -1 +i)- X 10 (ib, RATE -1 +1)
E(lb, f) — 1=t ypGen

RATE
with

RATE-1+t gy g

> X, (ib,RATE -1 +i)- X 10 (ib, RATE -1 +1)
E(ib,t) = —""

RATE
In 7.5.6.5 replace:
A LirGen — tHFAdj Eugllog)
E(k,l‘-l-w):lo 10
with
. Esg(ksg,t)
E(k,ry=10 1

In 7.9.3.2 replace:

Depending on the window_sequence and window_shape element different transform windows are used. A
combination of the window halves described as follows offers all possible window_sequences. Window
lengths specified below are dependent on the core-coder frame length. Numbers are listed for

coreCoderFramelLength of 1024 (960, 768).

14

© ISO/IEC 2012 - All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

with:

Depending on the window_sequence and window_shape element different transform windows are used. A
combination of the window halves described as follows offers all possible window_sequences. Window
lengths specified below are dependent on the core-coder frame length. Numbers are listed for
coreCoderFramelLength of 1024 (768).

Further below in 7.9.3.2 replace:
4 for N =2048 (1920, 1536)
6 for N =256 (240, 192)

o = kernel window alpha factor, o =

with:
4 for N =2048 (1536)

o = kernel window alpha factor, a =
6 for N =256 (192)

In all of 7.9.3.2 remove the mentioning of 1920 and 240 sample window lengths.

In the rest of the document remove all further references to 960/120 based frame length or 1920/240 based
window length and add reference to the 768/96 transform length (1536/192 window length) coding if
appropriate and if not already present. Do so also in formulas, equations and figures.

In 7.11.1, add to the end:

Unlike the delay introduced by MPEG Surround decoder as defined in ISO/IEC 23003-1:2007, 4.5, only High
Quality decoding is supported in MPS212. It is noted that this implies that the delay of 5 QMF samples prior to
the Nyquist analysis filterbanks shall not be inserted.

In 7.11.2.3.4, replace:

If bsPhaseCoding == 1 and bsResidualCoding == 1, the matrix Ré”" is defined as following:

with

If bsResidualCoding == 1, the matrix Ré"" is defined as follows (where, if bsPhaseCoding == 1, the

transmitted /PD"" values are used, and where, if bsPhaseCoding == 0, the value IPD = 0is used for all
parameter sets /and processing bands m):

In 7.11.2.3.4, add a sentence after the equation to calculate CLD];" as follows:
using
cLD""

CLD"" =10 10

lin

It is noted that resBands refers to the value of bsResidualBands, i.e. the number of MPS parameter bands
where residual coding is used.
In7.11.2.5 replace:

For the 2-1-2 configuration, the frequency axis is divided into four different regions according to
bsDecorrConfig-= 0 and only one decorrelator is used, X = 0.

with:

© ISO/IEC 2012 - Al rights reserved 15

ISO/IEC 23003-3:2012/Cor.1:2012(E)

For the 2-1-2 configuration, the frequency axis is divided into up to four different regions according to
bsDecorrConfig but only one decorrelator is used, X = 0.

At the end of 7.13 add a new subclause:
7.13.12 LPC initialization at decoder start-up

In frames where the first decoded frame is LPD and the initial filter LPCO is not transmitted within the
bitstream, the LPD core decoder is reset as for a regular start-up. In particular, the ACELP decoder is
initialized as described in 7.14.3. Additionally, the LSF vector corresponding to the LPC filter LPCO is set to
the value specified in Table COR1.2 before inverse LPC quantization.

Right after inverse LPC quantization, the LSF vector corresponding to LPCO is reset as follows:
mean_Isf + LSF,
LSF, = = 5 !

where mean_lIsf is the mean LSF vector specified in Table COR1.2 and LSF; is the LSF vector corresponding
to the LPC filter of frame J, i being determined as follows:

Table COR1.1 — Value of i for calculating LSF,

3

Condition Value of i
mod[0]<2 1
mod[0]=2

mod[0]=3 4

This operation corresponds to setting the LSF vector corresponding to LPCO to average between the mean
LSF vector and the nearest decoded LSF vector (which depends on the coding mode).

Table COR1.2 — Mean LSF vector for initialization

j mean_lIsf(j)
1 394,21
2 754,45
3 1209,89
4 1580,47
5 1953,97
6 2325,80
7 2684,41
8 3038,39
9 3392,56
10 3744,71
11 4118,14
12 4483,09
13 4862,21
14 5219,69
15 5594,41
16 5945,73

16 © ISO/IEC 2012 — All rights reserved

ISO/IEC 23003-3:2012/Cor.1:2012(E)

Amend 7.16.3, list item 4, as follows:

4. Compute the inverse DCT-IV to the gain-scaled FAC data to obtain the equivalent time-domain samples.
- The FAC transform length, fac_length, is by default equal to coreCoderFrameLength/8
- For transitions with short blocks, this length is reduced to coreCoderFramelLength/16
In the case of transitions between ACELP and FD mode, a multiplicative factor of (2/fac_length) is applied
to the output of the inverse DCT-IV.

In Annex B.1 replace diagram:

warped)

Block
Switching

Filter Bank

Psycho-
acoustic
control

with:

© ISO/IEC 2012 — All rights reserved 17

ISO/IEC 23003-3:2012/Cor.1:2012(E)

,,,,,,,,

warped)

Block
Switching

Filter Bank

Noise '
Quant. Filling @
Analyss.

In Annex B.16.3, Figure B.8 replace:
Quantized LSFs
with:

Quantized weighted residual LSFs

In Annex B.21 replace:
e mpegsMuxMode =2

with
e bsResidualCoding = 1

Furthermore, throughout the whole document replace “ari_” with “arith_”

18

© ISO/IEC 2012 - All rights reserved

