Edition 2.0 2018-03 # INTERNATIONAL PANDARD Energy management system application program interface (EMS-API) -Part 456: Solved power system state profiles Interface de programmation d'application pour système de gestion d'énergie (EMS-API) - Partie 456: Profils d'état de réseaux électriques résolus ### THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and #### IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing 21 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary 67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of EC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. #### A propos des publications IEC Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. #### Catalogue IEC - webstore.iec.ch/catalogue Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad. #### Recherche de publications IEC webstore.iec.ch/advsearchform La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées. #### IEC Just Published - webstore.iec.ch/justpublished Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email. #### Electropedia - www.electropedia.org Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 21 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne. #### Glossaire IEC - std.iec.ch/glossary 67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, CISPR de l'IEC. #### Service Clients - webstore.iec.ch/csc Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch. Edition 2.0 2018-03 # MTERNATIONAL Energy management system application program interface (EMS-API) -Part 456: Solved power system state profiles Interface de programmation d'application pour système de gestion d'énergie (EMS-API) - Partie 456: Profils d'état de réseaux électriques résolus INTERNATIONAL **ELECTROTECHNICAL** COMMISSION COMMISSION **ELECTROTECHNIQUE** INTERNATIONAL F 97' ICS 33.200 Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. Warning! Make sure that you obtained this publication from an authorized distributor. ® Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale ## CONTENTS | FOREWO | DRD | 4 | |----------------|---|----| | INTRODI | JCTION | 6 | | 1 Sco | oe | 7 | | 2 Norr | native references | 7 | | | ns and definitions | 7 | | | ile information | | | | rview | | | | cases | | | | | | | 6.1
6.2 | Overview EMS network analysis integration | | | 6.3 | Power flow based network analysis | | | | a model with CIMXML examples | | | 7.1 | Use of the interfaces | | | 7.1. | | | | 7.1.2 | () | | | 7.1.3 | | | | 7.2 | Topology (TP) interface | | | 7.3 | State Variables (SV) interface | 29 | | 7.4 | Steady State Hypothesis (SSH) interface | | | 8 Prof | | | | 8.1 | iles Comments and notes | 31 | | 8.2 | SteadyStateHypothesis profile | 32 | | 8.2. | SteadyStateHypothesis profile | 32 | | 8.2.2 | 2 Concrete Classes | | | 8.2.3 | Abstract Classes | 46 | | 8.2.4 | 4 Data Types | 53 | | 8.3 | ropology profile | ວວ | | 8.3. | | 55 | | 8.3.2 | 2 Concrete Classes | | | 8.3.3 | | 57 | | 8.4 | Ctato variables promo | 58 | | 8.4. | | 58 | | 8.4.2
8.4.3 | | | | 8.4.4 | | 65 | | | phyphy | 67 | | Dibliogra | μηγ | | | Ciaura 1 | Deletions between MAC profile and detect | | | _ | Relations between MAS, profile and dataset | | | • | - Profile relationships | | | _ | – Connectivity model example | | | • | – The European power system with regions | | | Figure 5 | Information exchange in power flow and sharing of results | 15 | | Figure 6 | – EMS datasets to an external client | 16 | | Figure 7 | Node-breaker power flow Integration architecture | 17 | | Figure 8 – Bus-branch power flow Integration architecture | 17 | |---|----| | Figure 9 – Boundary injection model | 18 | | Figure 10 – Alternate boundary modelling | 19 | | Figure 11 – Assembled model alternatives | 20 | | Figure 12 – Line boundary dataset example | 22 | | Figure 13 - Substation boundary dataset example | 22 | | Figure 14 Power Flow on an assembledd model | 23 | | Figure 15 – Power Flow on a regional network part | 24 | | Figure 16 - CIM relation between ConnectivityNode and TopologicalNode | 25 | | Figure 17 – Bus-branch modeling of bus coupler and line transfer | 26 | | Figure 18 – CIM topology model | 27 | | Figure 19 – Topology solution interface | 28 | | Figure 20 – CIM state variable solution model | 29 | | Figure 21 – State solution interface example | 30 | | | | | Table 1 – Profiles defined in this document | 8 | atic ce exa. In a gocument... On the land of lan #### INTERNATIONAL ELECTROTECHNICAL COMMISSION Part 456: Solved power system state profiles #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61970-456 has been prepared by IEC technical committee 57: Power systems management and associated information exchange. This second edition cancels and replaces the first edition published in 2013 and Amendment 1:2015. This edition constitutes a technical revision. It is based on the IEC 61970 UML CIM16 version 33. This edition includes the following significant technical changes with respect to the previous edition: - a) The Steady State Hypothesis (SSH) profile has been added in new Subclause 8.2. - b) Clause 5 "Overview" has been extended to better describe the relation between different profiles and aligned with the current nomenclature used with profiles, e.g. "data set" and "network part". - c) The former Clause 6 "Architecture" has been shrunk and merged with Clause 6 "Use cases". - d) The former Clause 7 "Applying the standard to business problems" has been split and merged with Clause 6 "Use cases" and Clause 7 "Data model with CIMXML examples". - e) Clause 6 "Use cases" description of the use cases has been extended. - f) The former Clause 8 "Data model with CIMXML examples" has become section 7 "Data model with CIMXML examples". - g) The CIMXML document examples in Clause 7 "Data model with CIMXML examples" has been updated to match with IEC 61970-552:2016. - h) Clause 8 "Profiles" describe the actual profile data. - i) Subclause 8.1 Comments and notes" gives additional information on the use some profile data. The text of this International Standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 57/1951/FDIS | 57/1963/RVD | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 61970 series, published under the general title Energy management system application program interface (EMS-API), can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. #### INTRODUCTION This document is one of several parts of the IEC 61970 series that defines common information model (CIM) datasets exchanged between application programs in energy management systems (EMS). The IEC 61970-300 series specifies the common information model (CIM). The CIM is an abstract model that represents the objects in an electric utility enterprise typically needed to model the operational aspects of a utility. This document is one of the IEC 61970-400 series of component interface standards that specify the semantic structure of data exchanged between components (or applications) and/or made publicly available data by a component. This document describes the payload that would be carried if applications are communicating via a messaging system, but the standard does not include the method of exchange, and therefore is applicable to a variety of exchange implementations. This document assumes and recommends that the exchanged data is formatted in XML based on the resource description framework (RDF) schema as specified in IEC 61970-552 CIM XML model exchange standard. IEC 61970-456 specifies three profiles: - The Steady State Hypothesis (SSH) profile that describe power flow application input variables such as voltage set points, switch statuses etc.. - The topology profile that describe a bus-branch model. A topology model may be created by a network model builder from a node-breaker model and SSH inputs or by a tool where a user interactively builds a topology model. A topology model is input to power flow applications. - State variables solution from a power system case such as is produced by power flow or state estimation applications. IEC 61970-456 describes the dynamic value inputs and solutions with reference to a power system model that conforms to IEC 61970-452 in this series of related standards. The separation of information into profiles also enables separation of data into documents corresponding to the profiles. In this way the profiles defined in this document generate small data documents compared with traditional bus-branch of node-breaker formats that include the network, the initial conditions and the result. ## ENERGY MANAGEMENT SYSTEM APPLICATION PROGRAM INTERFACE (EMS-API) – Part 456: Solved power system state profiles #### 1 Scope This part of IEC 61970 belongs to the IEC 61970-450 to IEC 61970-499 series that, taken as a whole, define at an abstract level the content and exchange mechanisms used for data transmitted between power system analyses applications, control centers and/or control center components. The purpose of this document is to rigorously define the subset of classes, class attributes, and roles from the CIM necessary to describe the result of state estimation, power flow and other similar applications that produce a steady-state solution of a power network, under a set of use cases which are included informatively in this standard. This document is intended for two distinct audiences, data producers and data recipients, and may be read from those two perspectives. From the standpoint of model export software used by a data producer, the document describes how a producer may describe an instance of a network case in order to make it available to some other program. From the standpoint of a consumer, the document describes what that importing software must be able to interpret in order to consume power flow cases. There are many different use cases for which use of this document is expected and they differ in the way that the document will be applied in each case. Implementers are expected to consider what use cases they wish to cover in order to know the extent of different options they must cover. As an example, this document will be used in some cases to exchange starting conditions rather than solved conditions, so if this is an important use case, it means that a consumer application needs to be able to handle an unsolved state as well as one which has met some solution criteria. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 61970-452:2017, Energy management system application program interface (EMS-API) – Part 452: CIM static transmission network model profiles IEC 61970-453:2014, Energy management system application program interface (EMS-API) – Part 453: Diagram layout profile IEC 61970-552:2016, Energy management system application program interface (EMS-API) - Part 552: CIMXML Model exchange format #### 3 Terms and definitions No terms and definitions are listed in this document.