## Rules for steam turbine thermal acceptance tests. Part 2: Method B - Wide range of accuracy for various types and sizes of turbines

Rules for steam turbine thermal acceptance tests. Part 2: Method B - Wide range of accuracy for various types and sizes of turbines



#### **EESTI STANDARDI EESSÕNA**

#### **NATIONAL FOREWORD**

Käesolev Eesti standard EVS-EN 60953-2:2006 sisaldab Euroopa standardi EN 60953-2:1995 ingliskeelset teksti.

Käesolev dokument on jõustatud 13.03.2006 ja selle kohta on avaldatud teade Eesti standardiorganisatsiooni ametlikus väljaandes.

Standard on kättesaadav Eesti standardiorganisatsioonist.

This Estonian standard EVS-EN 60953-2:2006 consists of the English text of the European standard EN 60953-2:1995.

This document is endorsed on 13.03.2006 with the notification being published in the official publication of the Estonian national standardisation organisation.

The standard is available from Estonian standardisation organisation.

#### Käsitlusala:

Provides for acceptance tests of steam turbines of various types and capacities with appropriate measuring uncertainty. Only the relevant portion of these rules will apply to any individual case. The resulting measuring uncertainty of the test result is determined by calculating methods presented in this standard.

#### Scope:

Provides for acceptance tests of steam turbines of various types and capacities with appropriate measuring uncertainty. Only the relevant portion of these rules will apply to any individual case. The resulting measuring uncertainty of the test result is determined by calculating methods presented in this standard.

**ICS** 27.040

Võtmesõnad:

## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 60953-2

December 1995

ICS 27.040

Descriptors: Turbine, steam apparatus, thermal test, acceptance test, accuracy, measurement technology, thermal efficiency

English version

## Rules for steam turbine thermal acceptance tests Part 2: Method B Wide range of accuracy for various types and sizes of turbines (IEC 953-2:1990)

Règles pour les essais thermiques de réception des turbines à vapeur Partie 2: Méthode B Précision de divers degrés pour multiples modèles et tailles de turbines (CEI 953-2:1990) Regeln für wärmetechnische Abnahmemessung an Dampfturbinen Teil 2: Methode B Weiter Genauigkeitsbereich für unterschiedliche Bauarten und Baugrößen von Dampfturbinen (IEC 953-2:1990)

This European Standard was approved by CENELEC on 1995-05-15. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

### **CENELEC**

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

#### Foreword

The text of the International Standard IEC 953-2:1990, prepared by IEC TC 5, Steam turbines, was submitted to the formal vote and was approved by CENELEC as EN 60953-2 on 1995-05-15 without any modification.

The following dates were fixed:

 latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement

(dop) 1996-07-01

 latest date by which the national standards conflicting with the EN have to be withdrawn

(dow) 1996-07-01

Annexes designated "normative" are part of the body of the standard.

Annexes designated "informative" are given for information only.

In this standard, appendices B, F, G and annex ZA are normative and appendices A, C, D and E are informative.

Annex ZA has been added by CENELEC.

#### **Endorsement notice**

The text of the International Standard IEC 953-2:1990 was approved by CENELEC as a European Standard without any modification.

#### Annex ZA (normative)

## Normative references to international publications with their corresponding European publications

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

NOTE: When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

| <u>Publication</u> | <u>Year</u>        | <u>Title</u>                                                                                                                                                              | EN/HD                    | <u>Year</u> |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|
| IEC 34-2           | 1972               | Rotating electrical machines Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles) | HD 53.2 S1 <sup>11</sup> | 1974        |
| IEC 41             | 1963 <sup>2)</sup> | International code for the field acceptance tests of hydraulic turbines                                                                                                   | -                        | -           |
| ISO 31-3           | 1978               | Quantities and units Quantities and units of mechanics                                                                                                                    | -                        | -           |
| ISO 5167           | 1980               | Measurement of fluid flow by means of orifice plates, nozzles and Venturi tubes inserted in circular cross-section conduits running full                                  | -                        | •           |

<sup>1)</sup> HD 53.2 S1 is based on IEC 34-2:1972 + IEC 34-2A:1974.

<sup>2)</sup> IEC 41:1994, mod. is harmonized as EN 60041:1994.

## NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60953-2

> Première édition First edition 1990-12

Règles pour les essais thermiques de réception des turbines à vapeur –

Deuxième partie:

Méthode B – Précision de divers degrés pour multiples modèles et tailles de turbines

Rules for steam turbine thermal acceptance Tests –

Part 2:

Method B – Wide range of accuracy for various types and sizes of turbines



#### Numéros des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000.

#### Publications consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

#### Validité de la présente publication

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique.

Des renseignements relatifs à la date de reconfirmation de la publication sont disponibles dans le Catalogue de la CEI.

Les renseignements relatifs à des questions à l'étude et des travaux en cours entrepris par le comité technique qui a établi cette publication, ainsi que la liste des publications établies, se trouvent dans les documents cidessous:

- «Site web» de la CEI\*
- Catalogue des publications de la CEI
   Publié annuellement et mis à jour régulièrement
   (Catalogue en ligne)\*
- Bulletin de la CEI
  Disponible à la fois au «site web» de la CEI\* et
  comme périodique imprimé

### Terminologie, symboles graphiques et littéraux

En ce qui concerne la terminologie générale, le lecteur se reportera à la CEI 60050: Vocabulaire Electrotechnique International (VEI).

Pour les symboles graphiques, les symboles littéraux et les signes d'usage général approuvés par la CEI, le lecteur consultera la CEI 60027: Symboles littéraux à utiliser en électrotechnique, la CEI 60417: Symboles graphiques utilisables sur le matériel. Index, relevé et compilation des feuilles individuelles, et la CEI 60617: Symboles graphiques pour schémas.

\* Voir adresse «site web» sur la page de titre.

#### Numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series.

#### Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

#### Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is to be found at the following IEC sources:

- IEC web site\*
- Catalogue of IEC publications
   Published yearly with regular updates
   (On-line catalogue)\*
- IEC Bulletin
   Available both at the IEC web site\* and as a printed periodical

## Terminology, graphical and letter symbols

For general terminology, readers are referred to IEC 60050: *International Electrotechnical Vocabulary* (IEV).

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: Letter symbols to be used in electrical technology, IEC 60417: Graphical symbols for use on equipment. Index, survey and compilation of the single sheets and IEC 60617: Graphical symbols for diagrams.

\* See web site address on title page.

## NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60953-2

> Première édition First edition 1990-12

Règles pour les essais thermiques de réception des turbines à vapeur –

Deuxième partie:

Méthode B – Précision de divers degrés pour multiples modèles et tailles de turbines

Rules for steam turbine thermal acceptance tests –

Part 2:

Method B – Wide range of accuracy for various types and sizes of turbines

© IEC 1990 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission Telefax: +41 22 919 0300 e-

on 3, rue de Varembé Geneva, Switzerland e-mail: inmail@iec.ch IEC web site http://www.iec.ch



Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Номиссия PRICE CODE

For price, see current catalogue

Pour prix, voir catalogue en vigueur

#### SOMMAIRE

| Préan                                                    | BULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pages<br>8                                                                                                     |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Préfa                                                    | CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                              |
| Intro                                                    | DUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                             |
| Articles                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| 1. D 1. 1. 1.                                            | 2 Objet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16<br>16<br>16<br>16                                                                                           |
| 2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2. | Symboles, unités                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16<br>16<br>18<br>20<br>24<br>24<br>28<br>28<br>30<br>30<br>30<br>30                                           |
| 3. Pi 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.             | inicipes directeurs.  Dispositions à prendre dès la conception de l'installation  Accords et dispositions préliminaires aux essais  Organisation des essais  Délai pour la réalisation des essais de réception  Direction des essais de réception.  Coût des essais de réception.  Préparation des essais.  Etat de l'installation.  Etat de la turbine à vapeur.  Etat du condenseur.  Isolement du cycle.  Contrôle d'étanchéité du condenseur et des réchauffeurs d'eau d'alimentation.  Propreté des filtres de vapeur.  Contrôle des équipements de mesure.  Mesures comparatives.  Réglages d'essais.  Réglage de la puissance.  Réglages spéciaux.  Essais préliminaires.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32<br>32<br>34<br>34<br>36<br>36<br>36<br>38<br>38<br>38<br>44<br>44<br>46<br>46<br>46<br>46<br>46<br>48<br>48 |
| 3. 3. 3. 3. 3. 4. Te 4. 4. 4. 4. 4. 4.                   | 3.4 Lecture des appareils de mesure intégrateurs 3.5 Autres méthodes 3.6 Relevé des mesures 3.7 Mesures supplémentaires 3.8 Calculs préliminaires 3.9 Cohérence des essais 4 Répétition des essais de réception 5 chniques de mesures et appareils de mesure 6 Généralités 6.1 Appareils de mesure 7 Incertitude des mesures 7 Incertitude | 50<br>50<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>54<br>54<br>54<br>54<br>54                         |
| 4.:                                                      | 2.2 Mesure de la puissance de la pompe alimentaire de la chaudière 2.3 Détermination de la puissance électrique d'un groupe turboalternateur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62<br>62<br>64                                                                                                 |

#### CONTENTS

| _    | Page       |                                                             |  |  |  |  |
|------|------------|-------------------------------------------------------------|--|--|--|--|
|      |            |                                                             |  |  |  |  |
| Pri  | FACE .     |                                                             |  |  |  |  |
| Int  | RODUCT     | ON                                                          |  |  |  |  |
| Clau | ise        |                                                             |  |  |  |  |
|      |            |                                                             |  |  |  |  |
| 1.   |            | and object                                                  |  |  |  |  |
|      | 1.1        | Scope          17           Object          17              |  |  |  |  |
|      | 1.2<br>1.3 | Matters to be considered in the contract                    |  |  |  |  |
|      |            |                                                             |  |  |  |  |
| 2.   |            | symbols, terms and definitions                              |  |  |  |  |
|      | 2.1        | General                                                     |  |  |  |  |
|      | 2.2        | Symbols, units                                              |  |  |  |  |
|      | 2.3        | Subscripts, superscripts and definitions                    |  |  |  |  |
|      | 2.4        | Definition of guarantee values and test results             |  |  |  |  |
|      | 2.4.1      | Thermal efficiency                                          |  |  |  |  |
|      |            | Thermodynamic efficiency 29                                 |  |  |  |  |
|      | 2.4.3      |                                                             |  |  |  |  |
|      | 2.4.4      |                                                             |  |  |  |  |
|      |            | Main steam flow capacity                                    |  |  |  |  |
|      | 2.4.6      | Guarantee values for extraction and mixed-pressure turbines |  |  |  |  |
|      | 2.4.7      |                                                             |  |  |  |  |
| 3.   | Guidir     | g principles                                                |  |  |  |  |
|      | 3.1        | Advance planning for test                                   |  |  |  |  |
|      | 3.2        | Preparatory agreements and arrangements for tests           |  |  |  |  |
|      | 3.3        | Planning of the test                                        |  |  |  |  |
|      | 3.3.1      | Time for acceptance tests                                   |  |  |  |  |
|      | 3.3.2      | Direction of acceptance tests                               |  |  |  |  |
|      | 3.3.3      | Cost of acceptance tests                                    |  |  |  |  |
|      | 3.4        | Preparation of the tests                                    |  |  |  |  |
|      | 3.4.1      | Condition of the plant                                      |  |  |  |  |
|      | 3.4.2      | Condition of the steam turbine                              |  |  |  |  |
|      | 3.4.3      |                                                             |  |  |  |  |
|      | 3.4.4      | Isolation of the cycle                                      |  |  |  |  |
|      |            | Checks for leakage of condenser and feedwater neaters       |  |  |  |  |
|      | 3.4.6      | Checking of the test measuring equipment                    |  |  |  |  |
|      | 3.4.7      | Comparison measurements                                     |  |  |  |  |
|      | 3.5<br>3.6 | Settings for tests                                          |  |  |  |  |
|      | 3.6.1      | Load settings                                               |  |  |  |  |
|      | 3.6.2      | Special settings                                            |  |  |  |  |
|      | 3.7        | Preliminary tests                                           |  |  |  |  |
|      | 3.8        | Acceptance tests                                            |  |  |  |  |
|      | 3.8.1      | Constancy of test conditions                                |  |  |  |  |
|      | 3.8.2      | Maximum deviation and fluctuation in test conditions        |  |  |  |  |
|      | 3.8.3      | Duration of test runs and frequency of readings             |  |  |  |  |
|      | 3.8.4      | Reading of integrating measuring instruments                |  |  |  |  |
|      | 3.8.5      | Alternative methods                                         |  |  |  |  |
|      | 3.8.6      | Recording of tests                                          |  |  |  |  |
|      | 3.8.7      | Additional measurement                                      |  |  |  |  |
|      | 3.8.8      | Preliminary calculations                                    |  |  |  |  |
|      | 3.8.9      | Consistency of tests                                        |  |  |  |  |
|      | 3.9        | Repetition of acceptance tests                              |  |  |  |  |
| 4.   | Meacu      | ring techniques and measuring instruments                   |  |  |  |  |
| ٦.   | 4.1        | General                                                     |  |  |  |  |
|      | 4.1.1      | Measuring instruments                                       |  |  |  |  |
|      | 4.1.2      | Measuring uncertainty                                       |  |  |  |  |
|      | 4.1.3      | Calibration of instruments                                  |  |  |  |  |
|      | 4.1.4      | Alternative instrumentation                                 |  |  |  |  |
|      | 4.1.5      | Mercury in instrumentation                                  |  |  |  |  |
|      | 4.2        | Measurement of power                                        |  |  |  |  |
|      | 4.2.1      | Determination of mechanical turbine output                  |  |  |  |  |
|      | 4.2.2      | Measurement of boiler feed pump power                       |  |  |  |  |
|      | 4.2.3      | Determination of electrical power of a turbine generator    |  |  |  |  |
|      |            | <u> </u>                                                    |  |  |  |  |

| Arti | cles           |                                                                                             | Pages      |
|------|----------------|---------------------------------------------------------------------------------------------|------------|
|      | 4.2.4          | Mesure de la puissance électrique                                                           | 66         |
|      | 4.2.5          | Branchement des appareils de mesure électriques                                             | 66         |
|      | 4.2.6          | Appareils de mesure électriques                                                             |            |
|      | 4.2.7          | Transformateurs de mesure                                                                   |            |
|      | 4.3            | Mesure des débits                                                                           |            |
|      | 4.3.1          | Détermination des débits à mesurer                                                          | 68<br>68   |
|      | 4.3.2          | Mesure du débit d'eau principal                                                             |            |
|      | 4.3.3          | Mesures de pression différentielle                                                          |            |
|      | 4.3.4          |                                                                                             |            |
|      | 4.3.6          | Mesure des débits secondaires                                                               |            |
|      | 4.3.7          | Débits secondaires occasionnels                                                             |            |
|      | 4.3.8          | Masse volumique d'eau et de vapeur                                                          |            |
|      | 4.3.9          | Détermination du débit d'eau de refroidissement du condenseur                               |            |
|      | 4.4            | Mesures de pression (sauf la pression d'échappement des turbines à condensation)            |            |
|      | 4.4.1          | Pressions à mesurer                                                                         |            |
|      | 4.4.2          | Instruments                                                                                 | 84         |
|      | 4.4.3          | Prises de pression et tuyauteries de raccordement                                           | 86         |
|      | 4.4.4          | Robinets d'isolement                                                                        | 88         |
|      | 4.4.5          | Etalonnage des appareils de mesure de pression                                              | 88         |
|      | 4.4.6          | Pression atmosphérique                                                                      | 88         |
|      | 4.4.7          | Correction des lectures                                                                     |            |
|      | 4.5            | Mesure de la pression d'échappement des turbines à condensation                             | 92         |
|      | 4.5.1          | Généralités                                                                                 | 92         |
|      | 4.5.2          | Plan de mesure                                                                              | 92         |
|      | 4.5.3          | Prises de pression                                                                          | 92         |
|      | 4.5.4          | Collecteurs de mesure                                                                       | 94<br>94   |
|      | 4.5.5<br>4.5.6 | Tuyauteries de raccordement                                                                 | 94         |
|      | 4.5.7          | Etanchéité du circuit de mesure                                                             | 94         |
|      | 4.5.8          | Etalonnage                                                                                  | 94         |
|      | 4.5.9          | Correction des lectures                                                                     | 96         |
|      | 4.6            | Mesure des températures                                                                     |            |
|      | 4.6.1          | Mesure des températures                                                                     | 96         |
|      | 4.6.2          | Appareils de mesure                                                                         | 96         |
|      | 4.6.3          | Mesures de températures principales                                                         | 98         |
|      | 4.6.4          | Mesure des températures du poste d'eau, y compris les températures de vapeur soutirée       | 98         |
|      | 4.6.5          | Mesure des températures de l'eau de refroidissement du condenseur                           | 98         |
|      | 4.6.6          | Précision des équipements de mesure de température                                          | 100        |
|      | 4.6.7          | Poches thermométriques pour thermomètres                                                    | 100        |
|      | 4.6.8          | Précautions à observer lors des mesures de température                                      | 100        |
|      | 4.7            | Mesure du titre de la vapeur                                                                | 102        |
|      | 4.7.1          | Généralités                                                                                 | 102        |
|      | 4.7.2<br>4.7.3 | Technique de mesure par traceur                                                             | 102<br>104 |
|      |                | Méthode de condensation                                                                     | 112        |
|      | 4.7.5          | Calcul de l'enthalpie de vapeur soutirée humide par la méthode d'injection à débit constant | 112        |
|      | 4.7.6          | Les traceurs et leur utilisation                                                            | 116        |
|      | 4.8            | Mesure du temps                                                                             | 118        |
|      | 4.9            | Mesure de la vitesse de rotation                                                            | 118        |
|      | D/             |                                                                                             | 110        |
| 5.   | Depoi          | nillement des essais                                                                        | 118<br>118 |
|      | 5.1<br>5.2     | Préparation du dépouillement                                                                | 120        |
|      | 5.2.1          | Calcul des valeurs moyennes des lectures des appareils de mesure                            | 120        |
|      | 5.2.2          | Correction et conversion des moyennes de lecture                                            | 120        |
|      | 5.2.3          | Vérification des données mesurées                                                           | 120        |
|      | 5.2.4          | Propriétés thermodynamiques de l'eau et de la vapeur                                        | 122        |
|      | 5.2.5          | Calcul des résultats d'essai.                                                               | 124        |
|      |                | ction des résultats de l'essai et comparaison avec la garantie                              | 124        |
| 6.   |                | Alon des resultats de l'essal et comparaison avec la garande                                | 124<br>124 |
|      | 6.1<br>6.2     | Valeurs et conditions de la garantie                                                        | 124        |
|      | 6.3            | Correction de la puissance maximale                                                         | 126        |
|      | 6.4            | Correction du rendement thermique ou thermodynamique                                        | 126        |
|      | 6.5            | Définition et application des coefficients de correction.                                   | 128        |
|      | 6.6            | Méthode de correction                                                                       | 128        |
|      | 6.6.1          | Correction par bilan thermodynamique                                                        | 130        |
|      | 6.6.2          | Correction par l'utilisation des courbes de correction fournies par le constructeur         | 132        |
|      |                | •                                                                                           |            |

| Cia | use    |                                                                      |     |     |   |     | Page |
|-----|--------|----------------------------------------------------------------------|-----|-----|---|-----|------|
|     | 4.2.4  | Measurement of electrical power                                      |     |     |   |     | 67   |
|     | 425    | Electrical instrument connections                                    | •   |     | • | •   | 67   |
|     |        |                                                                      |     |     |   |     |      |
|     |        | Electrical instruments                                               |     |     |   |     |      |
|     |        | Instrument transformers                                              |     |     |   |     |      |
|     | 4.3    | Flow measurement                                                     |     |     |   |     | 69   |
|     | 4.3.1  | Determination of flows to be measured                                |     |     |   |     | 69   |
|     | 432    | Measurement of primary water flow                                    | •   |     | • |     | 71   |
|     | 4.3.3  | Installation and deserting of life and in land and desired           | •   |     | ٠ |     | 71   |
|     |        | Installation and location of differential pressure devices           |     |     |   |     |      |
|     | 4.3.4  | Differential pressure measurements                                   |     |     |   |     | 75   |
|     | 4.3.5  | Water flow fluctuation                                               |     |     |   |     | 75   |
|     | 4.3.6  | Secondary flow measurements                                          |     |     |   |     | 81   |
|     | 4.3.7  | Occasional secondary flows                                           | •   |     | • |     | 83   |
|     | 4.3.8  | Density of water and steam                                           |     | •   | • |     | ວ    |
|     |        | Delisity of water and steam                                          |     |     | ٠ |     | 83   |
|     |        | Determination of cooling water flow of condenser                     |     |     |   |     |      |
|     | 4.4    | Pressure measurement (excluding condensing turbine exhaust pressure) |     |     |   |     |      |
|     | 4.4.1  | Pressures to be measured                                             |     |     |   |     | 85   |
|     | 4.4.2  | Instruments                                                          |     |     | • | •   | 87   |
|     | 4.4.3  | Pressure tapping holes and connecting lines                          |     |     | • | ٠.  | 89   |
|     |        | ressure tapping noies and connecting mies                            | ٠.  | • • | ٠ |     | 89   |
|     | 4.4.4  | Shut-off valves                                                      |     |     | ٠ |     | 89   |
|     | 4.4.5  | Calibration of pressure measuring devices                            |     |     |   |     | 89   |
|     | 4.4.6  | Atmospheric pressure                                                 |     |     |   |     | 91   |
|     | 4.4.7  | Correction of readings                                               |     |     |   |     | 93   |
|     | 4.5    | Condensing turbine exhaust pressure measurement                      | • • | •   | • |     | 02   |
|     |        | Condensing turome exhaust pressure measurement                       |     | •   | ٠ |     | 93   |
|     | 4.5.1  | General                                                              | ٠.  |     |   |     | 93   |
|     | 4.5.2  | Plane of measurement                                                 |     |     |   |     | 93   |
|     | 4.5.3  | Pressure taps                                                        |     |     |   |     | 95   |
|     | 4.5.4  | Manifolds                                                            |     |     |   |     | 95   |
|     | 155    | Connecting lines                                                     | • • | •   | • |     | 95   |
|     | 156    | Connecting intes.                                                    |     | •   | ٠ | ٠.  | 93   |
|     | 4.5.6  | Instruments                                                          |     | •   | ٠ |     | 95   |
|     | 4.5.7  | Tightness of measuring system                                        |     |     |   |     | 95   |
|     | 4.5.8  | Calibration                                                          |     |     |   |     | 07   |
|     | 4.5.9  | Correction of readings Temperature measurement                       |     |     |   |     | 97   |
|     | 4.6    | Temperature measurement                                              | • • | •   | • | • • | 97   |
|     | 4.6.1  | Doints of temperature measurement                                    | ٠.  | ٠   | ٠ |     | 97   |
|     | 4.0.1  | romasor temperature measurement                                      |     | •   | ٠ |     | 97   |
|     | 4.6.2  | Points of temperature measurement                                    |     |     | • |     | 99   |
|     | 4.6.3  | Main temperature measurements                                        |     |     |   |     | 99   |
|     | 4.6.4  | Feed train temperature measurements (including bled steam)           |     |     |   |     | QQ   |
|     | 4.6.5  | Condenser cooling water temperature measurement                      |     | •   | • |     | 101  |
|     | 4.6.6  | Accuracy of temperature measuring equipment                          |     | •   | • |     | 101  |
|     | 4.6.7  | Actuacy of temperature measuring equipment                           |     | •   | ٠ |     | 101  |
|     | 4.6.7  | Thermometer wells                                                    |     | ٠   |   |     | 101  |
|     | 4.6.8  | Precautions to be observed in the measurement of temperature         |     |     |   |     | 103  |
|     | 4.7    | Steam quality measurement                                            |     |     |   |     | 103  |
|     | 4.7.1  | General                                                              |     |     |   |     | 103  |
|     | 4.7.2  | Tracer technique                                                     |     | •   | • | • • | 105  |
|     | 472    | Tracer technique                                                     |     | •   | • |     | 103  |
|     | 4.7.3  | Condensing method                                                    |     | ٠   | • |     |      |
|     | 4./.4  | Constant rate injection method                                       |     | ٠   | ٠ |     |      |
|     | 4.7.5  | Extraction enthalpy determined by constant rate injection method     |     |     |   |     | 117  |
|     | 4.7.6  | Tracers and their use                                                |     |     |   |     | 119  |
|     | 4.8    | Time measurement                                                     |     |     |   |     | 119  |
|     | 4.9    | Speed measurement                                                    | •   | ٠   | • |     | 119  |
|     | 7.7    | Speed measurement                                                    |     | •   | • | • • | 119  |
| 5.  | Evalua | ation of tests.                                                      |     |     |   |     | 119  |
| ٠.  | 5.1    | Preparation of evaluation                                            | •   | •   | • |     | 121  |
|     |        | Treparation of evaluation                                            |     | ٠   | • |     |      |
|     | 5.2    | Computation of results                                               |     |     |   |     | 121  |
|     | 5.2.1  | Calculation of average values of instrument readings                 |     |     |   |     | 121  |
|     | 5.2.2  | Correction and conversion of averaged readings                       |     |     |   |     | 121  |
|     | 5.2.3  | Checking of measured data                                            |     |     |   |     | 123  |
|     | 5.2.4  | Thermodynamic properties of steam and water                          |     |     |   |     | 125  |
|     |        |                                                                      |     |     |   |     |      |
|     | 5.2.5  | Calculation of test results                                          |     |     |   |     | 125  |
| 6.  | Correc | tion of test results and comparison with guarantee                   |     |     |   |     | 125  |
| υ.  |        |                                                                      |     |     |   |     |      |
|     | 6.1    | Guarantee values and guarantee conditions                            |     |     |   |     | 125  |
|     | 6.2    | Correction of initial steam flow capacity                            |     |     |   |     | 125  |
|     | 6.3    | Correction of maximum output                                         |     |     |   |     | 127  |
|     | 6.4    | Correction of thermal and thermodynamic efficiency                   |     |     |   |     | 127  |
|     |        | Definition and application of correction values                      | •   | •   | • | •   | 129  |
|     | 6.6    | Correction methods                                                   |     |     |   |     |      |
|     |        |                                                                      |     |     |   |     | 129  |
|     | 6.6.1  | Correction by heat balance calculation                               |     |     |   |     | 131  |
|     | 6.6.2  | Correction by use of correction curves prepared by the manufacturer  |     |     |   |     | 133  |
|     |        |                                                                      |     |     |   |     |      |

| Clause                  |                                                                                                             | Page |
|-------------------------|-------------------------------------------------------------------------------------------------------------|------|
| 6.6.3                   | Tests to determine correction values                                                                        | 135  |
| 6.6.4                   | Correction by use of generalized correction curves.                                                         | 135  |
| 6.7                     | Variables to be considered in the correction                                                                | 135  |
|                         | Turbines with regenerative feed-water heating.                                                              | 135  |
| 6.7.1                   | Turbines with regenerative recu-water neating.                                                              | 133  |
| 6.7.2                   | Turbines which have no provision for the addition or extraction of steam after partial expansion            | 137  |
| 6.7.3                   |                                                                                                             | 139  |
| 6.7.4                   | Other types of turbine                                                                                      | 139  |
| 6.8                     | Guarantee comparison                                                                                        | 141  |
| 6.8.1                   | Guarantee comparison with locus curve                                                                       | 141  |
| 6.8.2                   | Guarantee comparison with guarantee point                                                                   | 143  |
| 6.8.3                   | Guarantee comparison for turbines with throttle governing                                                   | 143  |
| 6.8.4                   | Guarantee comparison for extraction turbines.                                                               | 143  |
| 6.9                     | Deterioration of turbine performance (ageing)                                                               | 145  |
|                         |                                                                                                             |      |
| <ol><li>Measu</li></ol> | ring uncertainty                                                                                            | 145  |
| 7.1                     | General                                                                                                     | 145  |
| 7.2                     | Determination of measuring uncertainty of steam and water properties                                        | 147  |
| 7.2.1                   | Pressure                                                                                                    | 147  |
| 7.2.2                   | Temperature                                                                                                 | 147  |
| 7.2.3                   | Enthalpy and enthalpy difference                                                                            | 149  |
| 7.3                     | Calculation of measuring uncertainty of output                                                              | 151  |
| 7.3.1                   | Electrical measurement                                                                                      | 151  |
|                         | Mechanical measurement                                                                                      | 151  |
| 7.3.2                   |                                                                                                             | 153  |
| 7.3.3                   | Additional uncertainty allowance because of unsteady load conditions                                        | 153  |
| 7.4                     | Determination of measuring uncertainty of mass flow                                                         |      |
| 7.4.1                   | Measuring uncertainty of mass flow measurements                                                             | 153  |
| 7.4.2                   | Measuring uncertainty of multiple measurements of primary flow                                              | 153  |
| 7.4.3                   | Uncertainty allowance for cycle imperfections                                                               | 155  |
| 7.5                     | Calculation of measuring uncertainty of results                                                             | 155  |
| 7.5.1                   | General                                                                                                     | 155  |
| 7.5.2                   | Measuring uncertainty of thermal efficiency                                                                 | 155  |
| 7.5.3                   | Measuring uncertainty of thermodynamic efficiency.                                                          | 157  |
| 7.5.4                   | Uncertainty of corrections                                                                                  | 157  |
| 7.5.5                   | Guiding values for the measuring uncertainty of results                                                     | 157  |
| Appendix .              | A - Feedwater heater leakage and condenser leakage tests                                                    | 161  |
| APPENDIX                | B — Throat tap nozzle                                                                                       | 161  |
| Appendix                | C - Evaluation of multiple measurements, compatibility                                                      | 171  |
| APPENDIX                | D - Mass flow balances                                                                                      | 173  |
|                         | E — Typical generalized correction curves for correction of test results according to guarantee conditions. | 177  |
|                         |                                                                                                             | 215  |
|                         | F - Short statistical definition of measuring uncertainty and error propagation in acceptance tests         | 213  |
| Appendix                | G — Calculation of measuring uncertainty of output — Electrical measurement                                 | 221  |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         | <b>.</b>                                                                                                    |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |
|                         |                                                                                                             |      |

#### COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

## RÈGLES POUR LES ESSAIS THERMIQUES DE RÉCEPTION DES TURBINES À VAPEUR

Deuxième partie: Méthode B – Précision de divers degrés pour multiples modèles et tailles de turbines

#### **PRÉAMBULE**

- Les décisions ou accords officiels de la CEI en ce qui concerne les questions techniques, préparés par des Comités d'Etudes où sont représentés tous les Comités nationaux s'intéressant à ces questions, expriment dans la plus grande mesure possible un accord international sur les sujets examinés.
- 2) Ces décisions constituent des recommandations internationales et sont agréées comme telles par les Comités nationaux.
- 3) Dans le but d'encourager l'unification internationale, la CEI exprime le vœu que tous les Comités nationaux adoptent dans leurs règles nationales le texte de la recommandation de la CEI, dans la mesure où les conditions nationales le permettent. Toute divergence entre la recommandation de la CEI et la règle nationale correspondante doit, dans la mesure du possible, être indiquée en termes clairs dans cette dernière.

#### **PRÉFACE**

La présente norme a été établie par le Comité d'Etudes n° 5 de la CEI: Turbines à vapeur. Le texte de cette norme est issu des documents suivants:

| Règle des Six Mois | Rapport de vote |
|--------------------|-----------------|
| 5(BC)24            | 5(BC)27         |

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Les publications suivantes de la CEI sont citées dans la présente norme:

Publications n° 34-2 (1972): Machines électriques tournantes, Deuxième partie: Méthodes pour la détermination des pertes et du rendement des machines électriques tournantes à partir d'essais (à

l'exclusion des machines pour véhicules de traction).

41 (1963): Code international concernant les essais de réception sur place des turbines hydrau-

liques

Autres publications citées:

Norme ISO 5167 (1980): Mesure de débit des fluides au moyen de diaphragmes, tuyères et tubes de Venturi

insérés dans des conduites en charge de section circulaire.

ISO 31-3 (1978): Grandeurs et unités - Grandeurs et unités de mécanique.

#### INTERNATIONAL ELECTROTECHNICAL COMMISSION

#### RULES FOR STEAM TURBINE THERMAL ACCEPTANCE TESTS

Part 2: Method B - Wide range of accuracy for various types and sizes of turbines

#### **FOREWORD**

- 1) The formal decisions or agreements of the IEC on technical matters, prepared by Technical Committees on which all the National Committees having a special interest therein are represented, express, as nearly as possible, an international consensus of opinion on the subjects dealt with.
- 2) They have the form of recommendations for international use and they are accepted by the National Committees in that sense
- 3) In order to promote international unification, the IEC expresses the wish that all National Committees should adopt the text of the IEC recommendation for their national rules in so far as national conditions will permit. Any divergence between the IEC recommendation and the corresponding national rules should, as far as possible, be clearly indicated in the latter.

#### **PREFACE**

This standard has been prepared by IEC Technical Committee No.5: Steam turbines. The text of this standard is based upon the following documents:

| Six Months' Rule | Report on Voting |
|------------------|------------------|
| 5(CO)24          | 5(CO)27          |

Full information on the voting for the approval of this standard can be found in the Voting Report indicated in the above table.

The following IEC publications are quoted in this standard:

Publications Nos. 34-2 (1972): Rotating electrical machines, Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles).

41 (1963): International code for the field acceptance tests of hydraulic turbines.

Other publications quoted:

ISO Standard 5167 (1980): Measurement of fluid flow by means of orifice plates, nozzles and Venturi tubes

inserted in circular cross-section conduits running full.

ISO 31-3 (1978): Quantities and units - Quantities and units of mechanics.

#### RÈGLES POUR LES ESSAIS THERMIQUES DE RÉCEPTION DES TURBINES À VAPEUR

Deuxième partie: Méthode B – Précision de divers degrés pour multiples modèles et tailles de turbines

#### Introduction

L'évolution rapide des techniques de mesure, l'augmentation de la puissance des turbines à vapeur et le développement des centrales nucléaires ont rendu nécessaire la révision de la Publication 46 de la CEI (1962) concernant les essais de réception.

Tous les besoins de l'industrie électrique en divers points du globe ne pouvant pas être couverts par une seule publication, la norme complète comporte deux parties qui décrivent deux façons différentes, à divers égards, de réaliser, de dépouiller et d'interpréter les essais de réception de turbines à vapeur et qui peuvent être utilisées indépendamment l'une de l'autre:

- a) La méthode A, qui fait l'objet de la première partie de la norme (CEI 953-1), est destinée aux essais thermiques de réception de la plus grande précision possible et s'applique aux turbines à vapeur à condensation de grande puissance.
- b) La méthode B, qui fait l'objet de la deuxième partie de la norme (CEI 953-2), est destinée aux essais thermiques comportant divers degrés de précision pour tenir compte de la multiplicité des modèles et des tailles de turbines à vapeur.

#### 1) Principes de base – Estimation de l'incertitude de mesure

lCette première partie prévoit des essais très précis de turbines à vapeur en vue d'obtenir les valeurs des performances avec le minimum d'incertitude de mesure. Les spécifications portant sur les conditions de fonctionnement pendant l'essai sont strictes et obligatoires.

La méthode A se fonde sur l'usage exclusif d'instruments étalonnés avec précision et sur les meilleures procédures de mesure existantes. L'incertitude qui en découle sur le résultat de l'essai est toujours suffisamment petite pour qu'il ne soit pas nécessaire de la prendre en compte dans la comparaison du résultat d'essai avec la valeur garantie. Cette incertitude ne dépassera pas 0,3% environ pour une tranche thermique à combustible fossile et 0,4% environ pour une tranche thermique nucléaire.

Le coût de l'instrumentation et les efforts déployés pour préparer et réaliser les essais sont, en général, économiquement justifiés pour les tranches de grande puissance et/ou les tranches prototypes.

La méthode B prévoit des essais de réception de turbines à vapeur de types et puissances variés avec une incertitude de mesure appropriée. Les instruments et procédures de mesure doivent être choisis en fonction de l'objectif fixé par la norme. Celle-ci prévoit principalement des instruments et procédures normalisés, mais peut éventuellement s'étendre à des clauses de très haute précision, nécessitant l'étalonnage des instruments. L'incertitude de mesure qui en découle sur le résultat de l'essai est donc déterminée par les méthodes de calcul présentées dans la norme. Sauf stipulation contraire du contrat, cette incertitude est normalement prise en compte dans la comparaison du résultat d'essai à la valeur garantie. Le coût total de l'essai de réception peut être maintenu en rapport avec l'intérêt économique présenté par les valeurs garanties à vérifier.

#### RULES FOR STEAM TURBINE THERMAL ACCEPTANCE TESTS

#### Part 2: Method B - Wide range of accuracy for various types and sizes of turbines

#### Introduction

The rapid development of measuring techniques, the increasing capacity of steam turbines and the introduction of nuclear power plants necessitated a revision of IEC Publication 46 (1962) regarding acceptance tests.

Since all the needs of the power industry in the different parts of the world could not be satisfied by one single publication, the complete standard is divided into two parts, describing two different approaches for conducting and evaluating thermal acceptance tests of steam turbines and which can be used separately:

- a) Method A, which is Part 1 of the standard (IEC 953-1), deals with thermal acceptance tests with high accuracy for large condensing steam turbines.
- b) Method B, which is Part 2 of the standard (IEC 953-2), deals with thermal acceptance tests with a wide range of accuracy for various types and sizes of steam turbines.
- 1) Basic philosophy and figures on uncertainty

Part 1 provides for very accurate testing of steam turbines to obtain the level of performance with minimum measuring uncertainty. The operating conditions during the test are stringent and compulsory.

Method A is based on the exclusive use of the most accurate calibrated instrumentation and the best measuring procedures currently available. The uncertainty of the test result is always sufficiently small that it normally need not be taken into account in the comparison between test result and guarantee value. This uncertainty will not be larger than about 0.3% for a fossil fired unit and 0.4% for a nuclear unit.

The cost for instrumentation and the efforts for preparing and conducting the tests will generally be justified economically for large and/or prototype units.

Method B provides for acceptance tests of steam turbines of various types and capacities with appropriate measuring uncertainty. Instrumentation and measuring procedures have to be chosen accordingly from a scope specified in the standard which is centred mainly on standardized instrumentation and procedures, but may extend eventually up to very high accuracy provisions requiring calibration. The resulting measuring uncertainty of the test result is then determined by calculating methods presented in the standard and normally, if not stated otherwise in the contract, taken into account in the comparison between test result and guarantee value. The total cost of an acceptance test can therefore be maintained in relationship with the economic value of the guarantee values to be ascertained.

Dans cette méthode, les spécifications portant sur les conditions de fonctionnement pendant l'essai sont un peu plus souples; en outre, des procédures sont recommandées pour le cas où ces spécifications ne pourraient être tenues.

Lorsqu'un essai est réalisé avec des instruments et des procédures bien normalisés, l'incertitude de mesure du résultat est habituellement de 0,9% à 1,2% pour une tranche thermique classique à condensation de grande puissance, de 1,1% à 1,4% pour une tranche thermique nucléaire et de 1,5% à 2,5% pour les turbines à contre-pression, les turbines à prélèvement et les petites turbines à condensation. Il est possible de réduire ces valeurs en améliorant encore l'instrumentation, essentiellement par des mesures supplémentaires du débit masse ou par l'étalonnage du dispositif de mesure de ce débit masse.

#### 2) Principales différences entre les méthodes A et B

Sur la préparation et la réalisation des essais, ainsi que sur les techniques de mesure, la méthode A comporte beaucoup plus d'instruction détaillées à respecter par les parties intéressées que la méthode B. Dans cette dernière, le détail de moyens propres à atteindre les objectifs est sans doute plus à la discrétion et au bon vouloir des participants à l'essai et dépend d'une expérience et d'une compétence suffisantes de leur part.

#### 3) Principes directeurs

Les exigences concernant la préparation et les conditions de l'essai, en particulier les point tels que durée de l'essai, écart et constance des conditions de l'essai, écart admissible entre doubles mesures, sont plus strictes dans la méthode A.

Il convient de réaliser l'essai de préférence dans les huit semaines suivant la mise en exploitation. On recherche, en fixant cette période, à minimiser la détérioration des performances et les risques de dégradation de la turbine.

Les essais préliminaires, dont la mesure de chute d'enthalpie, devront être effectués durant cette période pour contrôler les performances des corps de turbine haute et moyenne pression. Toutefois, ces essais ne permettent pas de déduire les performances du corps basse pression; c'est pourquoi il est impératif d'effectuer dès que possible les essais de réception.

En tout état de cause, si la mesure de la chute d'enthalpie lors de l'application de la méthode A met en évidence une détérioration possible du corps haute pression (HP) ou basse pression (BP), ou si les conditions de la tranche reportent les essais de plus de quatre mois après le premier démarrage, alors les essais de réception devront être différés.

Lors de l'application de la méthode A, une correction des résultats d'essai selon les rendements de chute enthalpique au démarrage, ou selon les effets du vieillissement, n'est pas admise.

Si l'essai devait être différé, la méthode A propose de le réaliser après la première grande visite d'inspection; plusieurs méthodes sont proposées pour déterminer approximativement l'état de la turbine avant l'essai.

#### 4) Instruments et méthodes de mesure

#### a) Mesure de la puissance électrique

En plus des conditions requises pour la mesure de la puissance électrique, qui sont semblables dans les deux méthodes, la méthode A exige un contrôle des instruments par une mesure comparative après chaque essai; l'écart admissible entre des mesures doubles est limité à 0,15%.

#### b) Mesure des débits

La méthode A impose l'utilisation de dispositifs étalonnés à pression différentielle pour la mesure des débits principaux. Elle recommande la tuyère avec prise de pression au col, dispositif qui ne fait pas l'objet de normes internationales, et donne des détails de sa configuration et de son utilisation.

L'étalonnage de ces dispositifs doit se faire avec les tuyauteries amont et aval et le tranquilliseur. Des méthodes permettant l'extrapolation nécessaire du coefficient de décharge à partir des valeurs étalonnées sont indiquées.

953-2 © IEC

The specifications of the operating conditions during the test are somewhat more flexible in this method; furthermore, procedures are recommended for treating cases where these specifications cannot be met.

When good-standardized instrumentation and procedures are applied in a test, the measuring uncertainty of the result will usually amount to 0.9% to 1.2% for a large fossil fuel fired condensing unit, to 1.4% for a nuclear unit and to 1.5% to 2.5% for back pressure, extraction and small condensing turbines. It is possible to reduce these values by additional improvement in instrumentation, primarily by additional measurements of primary mass flows and/or calibration of measuring devices for primary mass flow.

#### 2) Main differences between Methods A and B

In Method A, much more detailed information concerning the preparation and conduct of the tests and the measuring techniques are contained for guidance of the parties to the test than in Method B. In Method B, the detailed treatment of the objectives is left somewhat more to the discretion and decisions of the participants and necessitates sufficient experience and expertise on their part.

#### 3) Guiding principles

The requirements concerning the preparation and conditions of the test and especially such conditions of the test as duration, deviations and constancy of test conditions and acceptable differences between double measurements are more stringent in Method A.

The test should be conducted preferably within eight weeks after the beginning of the operation. It is the intent during this period to minimize performance deterioration and risk of damage to the turbine.

Preliminary tests including enthalpy drop tests should be made during this period to monitor HP and IP turbine section performance. However, these tests do not provide LP section performance and for this reason it is imperative to conduct the acceptance tests as soon as practicable.

Whatever the case, when using Method A, if an enthalpy drop test indicates a possible deterioration of the HP or IP section, or if the plant conditions require that the tests be postponed more than four months after the initial start, then the acceptance tests should be delayed.

An adjustment of the heat rate test results to start-up enthalpy drop efficiencies or for the effects of aging is not permitted when using Method A.

If the test has to be postponed, Method A proposes that the test be carried out after the first major internal inspection; several methods are proposed for establishing the approximate condition of the turbine prior to the tests.

- 4) Instruments and methods of measurement
- a) Measurement of electrical power

In addition to the conditions required for the measurement of electric power, which are similar in both methods, Method A requires a check of the instruments by a comparison measurement after each test run; the permissible difference between double measurements is limited to 0.15%.

#### b) Flow measurement

For the measurement of main flows the use of calibrated pressure difference devices is required in Method A. The application of a device not covered by international standardization, the throat-tap nozzle, is recommended therein and details of design and application are given.

The calibration of these devices shall be conducted with the upstream and downstream piping and flow-straightener. Methods for the necessary extrapolation of the discharge coefficient from the calibration values are given.

Dans la méthode B, des dispositifs normalisés à pression différentielle sont normalement utilisés pour la mesure des débits. L'étalonnage est recommandé lorsqu'on souhaite réduire l'incertitude de mesurage. Des mesures doubles ou multiples du débit principal sont également recommandées pour réduire cette incertitude et une méthode de vérification de compatibilité est décrite.

#### c) Mesure des pressions

Les méthodes imposées ou recommandées pour la mesure des pressions sont pratiquement identiques. Seules les méthodes de mesure de la pression d'échappement des turbines à condensation diffèrent quelque peu.

#### d) Mesure des températures

Les prescriptions sont pratiquement semblables dans les deux méthodes. Mais dans le détail, les exigences de la méthode A sont plus strictes:

- étalonnage avant et après l'essai,
- double mesure de la température principale avec un écart maximal de 0,5 K,
- thermocouples à ligne continue,
- exigences sur la précision d'ensemble.

#### e) Mesures du titre de la vapeur

Les méthodes A et B sont identiques.

#### 5) Dépouillement et interprétation des résultats

Le travail préparatoire au dépouillement et au calcul des résultats d'essai est traité de façon très semblable dans les méthodes A et B. Toutefois, les exigences quantitatives sont plus strictes dans la méthode A.

La méthode B comporte des propositions pour traiter les cas où certaines conditions n'ont pas été remplies, afin d'éviter le rejet de l'essai.

Elle contient en outre des méthodes détaillées pour le calcul de l'incertitude sur les variables mesurées et sur les résultats d'essai.

La méthode B recommande d'autres moyens pour l'exécution et l'interprétation des essais après la période spécifiée et sans inspection préalable.

#### 6) Correction des résultats d'essai et comparaison avec la garantie

La correction des résultats d'essai pour les ramener aux conditions de garantie est traitée dans les deux méthodes A et B.

La méthode A permet la comparaison des résultats d'essai avec la garantie sans tenir compte de l'incertitude du mesurage.

La méthode B présente un choix plus large de procédés de correction. De plus, l'incertitude de mesurage est prise en compte dans la comparaison avec la garantie.

#### 7) Propositions d'application

La méthode d'essai de réception appliquée devant être prise en compte dans les détails de conception de l'installation, on précisera dès que possible, de préférence dans le contrat de la turbine, la méthode à utiliser.

La méthode B peut s'appliquer à des turbines à vapeur de tous types et toutes puissances. L'incertitude de mesure souhaitée doit être décidée suffisamment tôt pour en tenir compte dans la conception de l'installation.

Si la garantie inclut la totalité ou une large part de la centrale, les parties de ces règles s'y rapportant peuvent être appliquées à un essai de réception conformément à la garantie.

In Method B standardized pressure-difference devices are normally applied for flow measurement. Calibration is recommended where a reduction of overall measuring uncertainty is desirable. Double or multiple measurement of primary flow is recommended for the reduction of measuring uncertainty and a method for checking the compatibility is described.

#### c) Pressure measurement

The requirements and recommendations for pressure measurements are essentially similar. Only the methods for the measurement of exhaust-pressure of condensing turbines differ to some extent.

#### d) Temperature measurement

The requirements are essentially similar in both methods. However detail requirements are more stringent in Method A:

- calibration before and after the test,
- double measurement of the main temperature with with 0.5 K maximum difference,
- thermocouples with continuous leads,
- required overall accuracy.

#### e) Steam quality measurements

Methods A and B are identical.

#### 5) Evaluation of tests

The preparatory work for the evaluation and calculation of the test results is covered in a very similar manner in Methods A and B. However, quantitative requirements are more stringent in Method A.

Method B contains some proposals for handling cases where some requirements have not been met to avoid rejection of the test.

In addition, Method B contains detailed methods for calculation of measuring uncertainty values of measured variables and tests results.

Method B recommends other methods for conducting and evaluating of the tests after the specified period and without a previous inspection.

#### 6) Correction of test results and comparison with guarantees

The correction of test results to guarantee conditions is covered in both Methods A and B.

Method A provides for the comparison of test results to guarantee without consideration of measuring uncertainty.

Method B gives a broader spectrum of correction procedures. Furthermore, the measuring uncertainty of the result is taken into account in the guarantee comparison.

#### 7) Proposals for application

Since the acceptance test method to be applied has to be considered in the details of the plant design, it should be stated as early as possible, preferably in the turbine contract, which method will be used.

Method B can be applied to steam turbines of any type and any power. The desired measuring uncertainty should be decided upon sufficiently early, so that the necessary provisions can be included in the plant.

If the guarantee includes the complete power plant or large parts thereof, the relevant parts of either method can be applied for an acceptance test in accordance with the definition of the guarantee value.

#### 1. Domaine d'application et objet

#### 1.1 Domaine d'application

Les règles de la présente norme sont applicables aux essais thermiques de réception couvrant divers degrés de précision pour les turbines à vapeur de tous types, toutes puissance et utilisation. Seule la partie appropriée de ces règles doit donc être appliquée à chaque cas particulier.

Ces règles concernent les essais des turbines alimentées soit par de la vapeur surchauffée, soit par de la vapeur saturée. Elles comprennent les mesures et procédures requises pour la détermination de l'enthalpie de la vapeur humide. Elles décrivent les précautions nécessaires pour permettre la réalisation des essais en respectant les règles de radioprotection en vigueur dans les centrales nucléaires.

La présente norme définit les règles de base pour la préparation, l'exécution et le dépouillement des essais, la comparaison avec les garanties et le calcul de l'incertitude des mesures. Les détails relatifs aux conditions dans lesquelles doivent être effectués les essais de réception sont également définis.

Si un cas spécial ou complexe non traité dans ces règles se présente, il doit donner lieu à un accord entre le constructeur et l'acheteur avant la signature du contrat.

#### 1.2 Objet

Le but des essais thermiques de réception des turbines à vapeur et des installations comportant des turbines décrits dans cette norme est de vérifier toutes les garanties données par le constructeur de l'installation en ce qui concerne:

- a) le rendement thermique de l'installation ou sa consommation spécifique de chaleur;
- b) le rendement thermodynamique de la turbine ou sa consommation spécifique de vapeur ou la puissance aux conditions de débits de vapeur spécifiées;
- c) le débit maximal de vapeur et/ou la puissance maximale.

Les garanties et leurs clauses doivent être formulées complètement et sans ambiguïté (voir 2.4). Les essais de réception peuvent également comporter toutes les mesures nécessaires pour effectuer les corrections suivant les conditions de la garantie et le contrôle du résultat.

#### 1.3 Points à examiner dans le contrat

Certains points de ces règles sont à prendre en considération dès la phase initiale du contrat. Ces points sont traités dans les paragraphes suivants:

#### Paragraphe

1.1 (4º alinéa) 1.2 (dernier alinéa) 3.1 (3º et 4º alinéas) 3.3.3 (1º alinéa) 6.6 6.8 6.9 (1º alinéa)

#### 2. Unités, symboles, termes et définitions

#### 2.1 Généralités

Le Système International d'Unités (SI) est utilisé dans ces règles, ce qui permet d'éviter tout facteur de conversion.

#### 1. Scope and object

#### 1.1 Scope

The rules given in this standard are applicable to thermal acceptance tests covering a wide range of accuracy on steam turbines of every type, rating and application. Only the relevant portion of these rules will apply to any individual case.

The rules provide for the testing of turbines, whether operating with either superheated or saturated steam. They include measurements and procedures required to determine specific enthalpy within the moisture region and describe precautions necessary to permit testing while respecting radiological safety rules in nuclear plants.

Uniform rules for the preparation, carrying out, evaluation, comparison with guarantee and calculation of measuring uncertainty of acceptance tests are defined in this standard. Details of the conditions under which the acceptance test shall take place are included.

Should any complex or special case arise which is not covered by these rules, appropriate agreement shall be reached by manufacturer and purchaser before the contract is signed.

#### 1.2 Object

The purpose of the thermal acceptance tests of steam turbines and turbine plants described in this standard is to verify guarantees given by the manufacturer of the plant concerning:

- a) turbine plant thermal efficiency or heat rate;
- b) turbine thermodynamic efficiency or steam rate or power output at specified steam flow conditions;
- c) main steam flow capacity and/or maximum power output.

The guarantees with their provisions shall be formulated completely and without contradictions (see 2.4). The acceptance tests may also include such measurements as are necessary for corrections according to the conditions of the guarantee and checking of the results.

#### 1.3 Matters to be considered in the contract

Some matters in these rules have to be considered at an early stage. Such matters are dealt with in the following sub-clauses:

# Sub-clause 1.1 (paragraph 4) 1.2 (paragraph 2) 3.1 (paragraph 3 and 4) 3.3.3 (paragraph 1) 6.6 6.8 6.9 (paragraph 1)

#### 2. Units, symbols, terms and definitions

#### 2.1 General

The International System of Units (SI) is used in these rules; all conversion factors can therefore be avoided.