Industrial communication networks - Fieldbus specifications -- Part 2: Physical layer specification and service definition

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

Käesolev Eesti standard EVS-EN 61158-2:2010	This Estonian standard EVS-EN 61158-2:2010
lingliskeelset teksti.	standard EN 61158-2:2010.
Standard on kinnitatud Eesti Standardikeskuse	This standard is ratified with the order of
31.10.2010 käskkirjaga ja jõustub sellekohase	Estonian Centre for Standardisation dated
teate avaidamisei EVS Teatajas.	31.10.2010 and is endorsed with the notification
· · · ·	national standardisation organisation.
1	
Euroopa standardimisorganisatsioonide poolt	Date of Availability of the European standard text
rahvuslikele liikmetele Euroopa standardi teksti	08.10.2010.
kattesaadavaks tegemise kudpaev on	
08.10.2010.	
Standard on kättesaadav Eesti	The standard is available from Estonian
standardiorganisatsioonist.	standardisation organisation.
к род ICS 25.040, 35.100, 35.240.50	FOLIEW ORNERARY ORNERARY

Standardite reprodutseerimis- ja levitamisõigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonilisse süsteemi või edastamine ükskõik millises vormis või millisel teel on keelatud ilma Eesti Standardikeskuse poolt antud kirjaliku loata.

Kui Teil on küsimusi standardite autorikaitse kohta, palun võtke ühendust Eesti Standardikeskusega: Aru 10 Tallinn 10317 Eesti; <u>www.evs.ee</u>; Telefon: 605 5050; E-post: <u>info@evs.ee</u>

Right to reproduce and distribute belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without permission in writing from Estonian Centre for Standardisation.

If you have any questions about standards copyright, please contact Estonian Centre for Standardisation: Aru str 10 Tallinn 10317 Estonia; <u>www.evs.ee</u>; Phone: 605 5050; E-mail: <u>info@evs.ee</u>

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 61158-2

October 2010

ICS 25.040; 35.100; 35.240.50

Supersedes EN 61158-2:2008

English version

Industrial communication networks -Fieldbus specifications -: Physical layer specification and service definition (IEC 61158-2:2010) Réseaux de communication industriels -Industrielle Kommunikationsnetze -Spécifications des bus de perrain -Feldbusse -Partie 2: Spécification des couches Teil 2: Spezifikation physiques et définition des services und Dienstfestlegungen des Physical (CEI 61158-2:2010) Layer (Bitübertragungsschicht) (IEC 61158-2:2010) This European Standard was approved by CENELEC on 2010-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEO nber. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENERC member into its own language and notified to the Central Secretariat has the same status as the official versions CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Romania, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. CENELFC European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2010 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 65C/598/FDIS, future edition 5 of IEC 61158-2, prepared by SC 65C, Industrial networks, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61158-2 on 2010-09-01.

This European Standard supersedes EN 61158-2:2008.

This EN 61158-2:2010 includes the following significant technical changes with respect to EN 61158-2:2008:

- for Type 18, Table 157 reduced tolerance to 5 %;
- for Type 18, in 32,5.3.1 removed minimum cable length;
- for Type 18, in 32.5 and R.2.2 cable reference removed;
- for Type 18, Table 169 and 161 terminating resistor value changed to 680 Ω .

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENEEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2011-06-01
 latest date by which the national standards conjucting
- with the EN have to be withdrawn

Annex ZA has been added by CENELEC.

Endorsement notice

2013-09-01

(dow)

The text of the International Standard IEC 61158-2:2010 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60079-0	NOTE	Harmonized as EN 60079-0.
IEC 60079-27	NOTE	Harmonized as EN 60079-27.
IEC 60875-1	NOTE	Harmonized as EN 60875-1.
IEC 60947-5-2	NOTE	Harmonized as EN 60947-5-2.
IEC/TR 61158-1	NOTE	Harmonized as CLC/TR 61158-1.
IEC 61158-4-1:2007	NOTE	Harmonized as EN 61158-4-1:2008 (not modified).
IEC 61158-4-4:2007	NOTE	Harmonized as EN 61158-4-4:2008 (not modified).
IEC 61158-4-7:2007	NOTE	Harmonized as EN 61158-4-7:2008 (not modified).
IEC 61158-4-8:2007	NOTE	Harmonized as EN 61158-4-8:2008 (not modified).
IEC 61158-4-16:2007	NOTE	Harmonized as EN 61158-4-16:2008 (not modified).
IEC 61300-3-4	NOTE	Harmonized as EN 61300-3-4.

EVS-EN 61158-2:2010

- IEC 61491 NOTE Harmonized as EN 61491.
- IEC 61596 NOTE Harmonized as EN 61596.
- IEC 61784-1 NOTE Harmonized as EN 61784-1.

this document is a preview generated by EUS

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

	O,			
Publication	Year	Title	<u>EN/HD</u>	<u>Year</u>
IEC 60050-731	-	International Electrotechnical Vocabulary (IEV) -	-	-
		Chapter 731: Optical fibre communication		
IEC 60079-11	-	Explosive atmospheres - Part 11: Fouipment protection by intrinsic safety "i"	EN 60079-11	-
IEC 60079-14	2002	Electrical appratus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than integs)	EN 60079-14 ¹⁾	2003
IEC 60079-25	-	Explosive atmospheres Part 25: Intrinsically sate	EN 60079-25	-
IEC 60169-17	1980	Radio-frequency connectors - Part 17: R.F. coaxial connectors with inner diameter of outer conductors from (0,256 in) with screw coupling - Characteristic impedance 50 ohms (type TNC)	-	-
IEC 60189-1	2007	Low-frequency cables and wires with PVC insulation and PVC sheath - Part 1: General test and measuring methods	-	-
IEC 60255-22-1 (mod)	1988	Electrical relays - Part 22: Electrical disturbance tests for measuring relays and protection equipment - Section 1: 1 MHz burst disturbance tests	SL A	-
IEC 60364-4-41 (mod)	-	Low-voltage electrical installations - Part 4-41: Protection for safety - Protection against electric shock	HD 60264-4-41	-
IEC 60364-5-54 (mod)	-	Electrical installations of buildings - Part 5-54: Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors	HD 60364-5-54	-
IEC 60529	-	Degrees of protection provided by enclosures (IP Code)	-	-

 $^{^{1)}\,\}text{EN}$ 60079-14 is superseded by EN 60079-14:2008, which is based on IEC 60079-14:2007.

Publication	Year	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC 60603-7-4	-	Connectors for electronic equipment - Part 7-4: Detail specification for 8-way, unshielded, free and fixed connectors, for data transmissions with frequencies up to 250 MHz	EN 60603-7-4	-
IEC 60760	-	Flat, quick-connect terminations	-	-
IEC 60793	Series	Optical fibres	-	-
IEC 60794-1-2	2003	Optical fibre cables - Part 1-2: Generic specification - Basic optical cable test procedures	EN 60794-1-2	2003
IEC 60807-3	5000	Rectangular connectors for frequencies below 3 MHz - Part 3: Detail specification for a range of connectors with trapezoidal shaped metal shells and round contacts - Removable crimp types with closed crimp barrels, rear insertion/rear extraction	-	-
IEC 60874-10-1	-	Connectors for optical fibres and cables - Par 00-1: Detail specification for fibre optic connector type BFOC/2,5 terminated to multimede fibre type A1	-	-
IEC 61000-4-2	-	Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test	EN 61000-4-2	-
IEC 61000-4-3	-	Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field in munity test	EN 61000-4-3	-
IEC 61000-4-4	-	Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transpent/burst immunity test	EN 61000-4-4	-
IEC 61131-2	-	Programmable controllers - Part 2: Equipment requirements and tests	EN 61131-2	-
IEC 61156-1	2007	Multicore and symmetrical pair/quad capies for digital communications - Part 1: Generic specification	-	-
IEC 61158-4-2	-	Industrial communication networks - Fieldbus specifications - Part 4-2: Data-link layer protocol specification - Type 2 elements	EN 61158-4-2	-
IEC 61158-4-3	2010	Industrial communication networks - Fieldbus specifications - Part 4-3: Data-link layer protocol specification - Type 3 elements	- ~r	-
IEC 61169-8	2007	Radio-frequency connectors - Part 8: Sectional specification - RF coaxial connectors with inner diameter of outer conductor 6,5 mm (0,256 in) with bayonet lock - Characteristics impedance 50 ohms (type BNC)	EN 61169-8	2007
IEC 61754-2	-	Fibre optic connector interfaces - Part 2: Type BFOC/2,5 connector family	EN 61754-2	-

EVS-EN 61158-2:2010

Publication	<u>Year</u>	Title	<u>EN/HD</u>	Year
IEC 61754-13	-	Fibre optic connector interfaces - Part 13: Type FC-PC connector	EN 61754-13	-
IEC 61754-22	-	Fibre optic connector interfaces - Part 22: Type F-SMA connector family	EN 61754-22	-
ISO/IEC 7498	Series	Information technology - Open Systems Interconnection - Basic Reference Model: The Basic Model	-	-
ISO/IEC 8482	-	Information technology - Telecommunications and information exchange between systems - Twisted pair multipoint interconnections	-	-
ISO/IEC 8802-3	,00C	Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications	-	-
ISO/IEC 9314-1	-	Information Processing Systems - Fibre distributed data interface (FDDI) - Part 1: Teken Ring physical layer protocol (PHY)	-	-
ISO/IEC 10731	-	Information technology - Open Systems Interconnection Basic reference model - Conventions for the definition of OSI services	-	-
ANSI TIA/EIA-232-F	-	Interface between data terminal equipment and data circuit - Terminating equipment employing serial binary data interchange	-	-
ANSI TIA/EIA-422-E	3 -	Electrical characteristics of balanced voltage digital interface circuits	-	-
ANSI TIA/EIA-485-A	\ -	Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems	-	-
ANSI TIA/EIA-644-A	ι -	Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits	NI TI	-
			U	

CONTENTS

FOF	REWORD	14
0	Introduction	16
1	Scope	20
2	Normative references	20
3	Terms and definitions	22
4	Symbols and abbreviations	45
5	DLL – PhL interface	56
6	Systems management – PhL interface	77
7	DCE independent-sublayer (DIS)	91
8	DTE – DCE interface and MIS-specific functions	93
9	Medium dependent suplayer (MDS)	114
10	MDS – MAU interface	135
11	Types 1 and 7: Medium attachment unit: voltage mode, linear-bus-topology 150 Ω twisted-pair wire medium	143
12	Types 1 and 3: Medium attackment unit: 31,25 kbit/s, voltage-mode with low-power option, bus- and tree-topology, Ω wire medium	158
13	Type 1: Medium attachment unit: content mode, twisted-pair wire medium	175
14	Type 1: Medium attachment unit: current mode (1 A), twisted-pair wire medium	185
15	Types 1 and 7: Medium attachment unit dual-fiber optical media	194
16	Type 1: Medium attachment unit: 31,25 kb//e single-fiber optical medium	201
17	Type 1: Medium attachment unit: radio signating	204
18	Type 2: Medium attachment unit: 5 Mbit/s, voltage-mode, coaxial wire medium	214
19	Type 2: Medium attachment unit: 5 Mbit/s, opticaredium	226
20	Type 2: Medium attachment unit: network access por (NAP)	231
21	Type 3: Medium attachment unit: synchronous transmission, 31,25 kbit/s, voltage mode, wire medium	234
22	Type 3: Medium attachment unit: asynchronous transmission wire medium	251
23	Type 3: Medium attachment unit: asynchronous transmission, optical medium	268
24	Type 4: Medium attachment unit: RS-485	277
25	Type 4: Medium attachment unit: RS-232	279
26	Type 6: This clause has been removed	280
27	Type 8: Medium attachment unit: twisted-pair wire medium	280
28	Type 8: Medium attachment unit: optical media	285
29	Type 12: Medium attachment unit: electrical medium	292
30	Type 16: Medium attachment unit: optical fiber medium at 2, 4, 8 and 16 Mbit/s	294
31	Type 18: Medium attachment unit: basic medium	307
32	Type 18: Medium attachment unit: powered medium	311
Ann	nex A (normative) Type 1: Connector specification	320
Ann for t	nex B (informative) Types 1 and 3: Cable specifications and trunk and spur lengths the 31,25 kbit/s voltage-mode MAU	328
Ann	nex C (informative) Types 1 and 7: Optical passive stars	330
Ann	nex D (informative) Types 1 and 7: Star topology	331

Annex E (informative) Type 1: Alternate fibers	335
Annex F (normative) Type 2: Connector specification	336
Annex G (normative) Type 2: Repeater machine sublayers (RM, RRM) and redundant PhLs	339
Annex H (informative) Type 2: Reference design examples	350
Annex I (normative) Type 3: Connector specification	356
Annex J (normative) Type 3: Redundancy of PhL and medium	363
Annex K (normative) Type 3: Optical network topology	364
Annex L (informative) Type 3: Reference design examples for asynchronous transmission, wire medium, intrinsically safe	373
Annex M (normative) Type 8: Connector specification	375
Annex N (normative) Annex N (normative) Annex N (normative)	380
Annex O (normative) Type 16: Optical network topology	381
Annex P (informative) Type 16: Reference design example	386
Annex Q (normative) Type 18 Connector specification	390
Annex R (normative) Type 18: Vedia cable specifications	395
Bibliography	399
S.	
Figure 1 – General model of physical lover	17
Figure 2 – Mapping between data units arross the DLL – PhL interface	57
Figure 3 – Data service for asynchronous transmission	62
Figure 4 – Interactions for a data sequence of a master: identification cycle	67
Figure 5 – Interactions for a data sequence of a ster: data cycle	68
Figure 6 – Interactions for a data sequence of a slave: identification cycle	69
Figure 7 – Interactions for a data sequence of a slave gata cycle	70
Figure 8 – Interactions for a check sequence of a master	71
Figure 9 – Interactions for a check sequence of a slave	72
Figure 10 – Reset, Set-value, Get-value	81
Figure 11 – Event service	81
Figure 12 – Interface between PhL and PNM1 in the layer model.	86
Figure 13 – Reset, Set-value, Get-value PhL services	87
Figure 14 – Event PhL service	87
Figure 15 – Allocation of the interface number	88
Figure 16 – Configuration of a master	92
Figure 17 – Configuration of a slave with an alternative type of transmission	93
Figure 18 – Configuration of a bus coupler with an alternative type of transmission	93
Figure 19 – DTE/DCE sequencing machines	98
Figure 20 – State transitions with the ID cycle request service	107
Figure 21 – MIS-MDS interface: identification cycle request service	108
Figure 22 – MIS-MDS interface: identification cycle request service	109
Figure 23 – State transitions with the data cycle request service	109
Figure 24 – MIS-MDS interface: data cycle request service	110
Figure 25 – State transitions with the data sequence classification service	110
Figure 26 – Protocol machine for the message transmission service	111

Figure 27 – Protocol machine for the data sequence identification service	112
Figure 28 – Protocol machine for the message receipt service	113
Figure 29 – Protocol data unit (PhPDU)	114
Figure 30 – PhSDU encoding and decoding	115
Figure 31 – Manchester encoding rules	115
Figure 32 – Preamble and delimiters	117
Figure 33 – Manchester coded symbols	118
Figure 34 – PhPAU format, half duplex	119
Figure 35 – PhRoy format, full duplex	121
Figure 36 – Data sequence PhPDU	125
Figure 37 – Structur Of the header in a data sequence PhPDU	125
Figure 38 – Check sequence PhPDU	126
Figure 39 – Structure of a headers in a check sequence PhPDU	126
Figure 40 – Structure of the status PhPDU	127
Figure 41 – Structure of the header in a status PhPDU	127
Figure 42 – Structure of the medium activity status PhPDU	128
Figure 43 – Structure of the header for a medium activity status PhPDU	128
Figure 44 – Reset PhPDU	129
Figure 45 – Configuration of a master	130
Figure 46 – Configuration of a slave	130
Figure 47 – Configuration of a bus coupler	130
Figure 48 – Protocol data unit	131
Figure 49 – PhSDU encoding and decoding	131
Figure 50 – Manchester encoding rules	131
Figure 51 – Example of an NRZI-coded signal	134
Figure 52 – Fill signal	134
Figure 53 – Jitter tolerance	141
Figure 54 – Transmit circuit test configuration	147
Figure 55 – Output waveform	148
Figure 56 – Transmitted and received bit cell jitter (zero crossing point deviation)	149
Figure 57 – Signal polarity	150
Figure 58 – Receiver sensitivity and noise rejection	151
Figure 59 – Power supply ripple and noise	154
Figure 60 – Fieldbus coupler	156
Figure 61 – Transition from receiving to transmitting	163
Figure 62 – Power supply ripple and noise	167
Figure 63 – Test circuit for single-output power supplies	168
Figure 64 – Test circuit for power distribution through an IS barrier	169
Figure 65 – Test circuit for multiple output supplies with signal coupling	170
Figure 66 – Fieldbus coupler	172
Figure 67 – Protection resistors	172
Figure 68 – Test configuration for current-mode MAU	178
Figure 69 – Transmitted and received bit cell jitter (zero crossing point deviation)	179

Figure 70 – Noise test circuit for current-mode MAU	181
Figure 71 – Transmitted and received bit cell jitter (zero crossing point deviation)	189
Figure 72 – Power supply harmonic distortion and noise	192
Figure 73 – Optical wave shape template	197
Figure 74 – Cellular radio topology and reuse of frequencies	208
Figure 75 – Radio segment between wired segments topology	209
Figure 76 – Mixed wired and radio medium fieldbus topology	210
Figure 77 – Components of 5 Mbit/s, voltage-mode, coaxial wire PhL variant	215
Figure 78 – Coaxial wire MAU block diagram	215
Figure 79 – Coaxia wire MAU transmitter	216
Figure 80 – Coaxial Me MAU receiver operation	217
Figure 81 – Coaxial wike AU transmit mask	218
Figure 82 – Coaxial wire MAU receive mask	219
Figure 83 – Transformer symbol	220
Figure 84 – 5 Mbit/s, voltage-role, coaxial wire topology example	222
Figure 85 – Coaxial wire medium pology limits	223
Figure 86 – Coaxial wire medium tagelectrical characteristics	224
Figure 87 – MAU block diagram 5 Mbit/s optical fiber medium	227
Figure 88 – NAP reference model	231
Figure 89 – Example of transient and permanent nodes	232
Figure 90 – NAP transceiver	233
Figure 91 – NAP cable	234
Figure 92 – Circuit diagram of the principle of measuring impedance	239
Figure 93 – Definition of CMRR	240
Figure 94 – Block circuit diagram of the principle of meturing CMRR	240
Figure 95 – Power supply ripple and noise	243
Figure 96 – Output characteristic curve of a power supply of the category EEx ib	250
Figure 97 – Output characteristic curve of a power supply of the category EEx ia	250
Figure 98 – Repeater in linear bus topology	253
Figure 99 – Repeater in tree topology	253
Figure 100 – Example for a connector with integrated inductance	255
Figure 101 – Interconnecting wiring	255
Figure 102 – Bus terminator	256
Figure 103 – Linear structure of an intrinsically safe segment	258
Figure 104 – Topology example extended by repeaters	259
Figure 105 – Bus terminator	261
Figure 106 – Waveform of the differential voltage	262
Figure 107 – Test set-up for the measurement of the idle level for devices with an integrated termination resistor	264
Figure 108 – Test set-up for the measurement of the idle level for devices with a connectable termination resistor	264
Figure 109 – Test set-up for measurement of the transmission levels	265
Figure 110 – Test set-up for the measurement of the receiving levels	265
Figure 111 – Fieldbus model for intrinsic safety	266

Figure 112 – Communication device model for intrinsic safety	266
Figure 113 – Connection to the optical network	269
Figure 114 – Principle structure of optical networking	270
Figure 115 – Definition of the standard optical link	270
Figure 116 – Signal template for the optical transmitter	275
Figure 117 – Recommended interface circuit	279
Figure 118 – MAU of an outgoing interface	280
Figure 119 – MA of an incoming interface	281
Figure 120 - Remote bus link	281
Figure 121 – Interiore to the transmission medium	282
Figure 122 – Wiring Oct	285
Figure 123 – Terminal esistor network	285
Figure 124 – Fiber optic remote bus cable	286
Figure 125 – Optical fiber reporte bus link	286
Figure 126 – Optical wave share template optical MAU	288
Figure 127 – Optical transmission in e	294
Figure 128 – Optical signal envelop	296
Figure 129 – Display of jitter (J _{noise}).	297
Figure 130 – Input-output performance of a slave	299
Figure 131 – Functions of a master connection	302
Figure 132 – Valid transmitting signals during the transition from fill signal to telegram delimiters	304
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal	305
Figure 134 – Functions of a slave connection	306
Figure 135 – Network with two slaves	307
Figure 136 – Minimum interconnecting wiring	308
Figure 137 – Dedicated cable topology	309
Figure 138 – T-branch topology	309
J	
Figure 139 – Communication element isolation	311
Figure 139 – Communication element isolation	311 311
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring.	311 311 312
Figure 139 – Communication element isolation	311 311 312 313
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology	311 311 312 313 313
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology	311 311 312 313 313 313
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution	311 311 312 313 313 313 313
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation. Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology. Figure 143 – Dedicated cable topology . Figure 144 – T-branch topology . Figure 145 – Type 18-PhL-P power distribution. Figure 146 – Type 18-PhL-P power distribution.	311 311 312 313 313 313 313 316 316
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution. Figure 146 – Type 18-PhL-P power distribution. Figure 147 – Type 18-PhL-P power supply filtering and protection.	311 311 312 313 313 313 316 316 318
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation. Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology. Figure 143 – Dedicated cable topology. Figure 144 – T-branch topology . Figure 145 – Type 18-PhL-P power distribution. Figure 146 – Type 18-PhL-P power distribution. Figure 147 – Type 18-PhL-P power distribution. Figure 147 – Type 18-PhL-P power supply filtering and protection. Figure 148 – Communication element isolation .	311 311 312 313 313 313 316 316 318 318
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution. Figure 146 – Type 18-PhL-P power distribution. Figure 147 – Type 18-PhL-P power supply filtering and protection Figure 148 – Communication element isolation Figure 149 – Communication element and i/o isolation	311 311 312 313 313 313 316 316 318 318 318
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution Figure 146 – Type 18-PhL-P power distribution Figure 147 – Type 18-PhL-P power distribution Figure 148 – Communication element isolation Figure 149 – Communication element and i/o isolation Figure 150 – PhL-P power supply circuit	311 311 312 313 313 313 313 316 316 318 318 318 318
Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution Figure 146 – Type 18-PhL-P power distribution Figure 147 – Type 18-PhL-P power distribution Figure 148 – Communication element isolation Figure 149 – Communication element and i/o isolation Figure 150 – PhL-P power supply circuit Figure A.1 – Internal fieldbus connector	311 311 312 313 313 313 313 316 316 318 318 318 319 320

Figure A.3 – External fieldbus connector keyways, keys, and bayonet pins and grooves \ldots	322
Figure A.4 – External fieldbus connector intermateability dimensions	323
Figure A.5 – External fieldbus connector contact arrangement	324
Figure A.6 – Contact designations for the external connector for typical industrial environments	325
Figure A.7 – External fixed (device) side connector for typical industrial environments: dimensions	325
Figure A.8 – External free (cable) side connector for typical industrial environments: dimensions	326
Figure A.9 – Optical connector for typical industrial environments (FC connector)	326
Figure A.10 – Option connector for typical industrial environments (ST connector)	327
Figure C.1 – Examples an optical passive reflective star	330
Figure C.2 – Example Gan optical passive transmitive star	330
Figure D.1 – Example of star topology with 31,25 kbit/s, single fiber mode, optical MAU	331
Figure D.2 – Multi-star topology with an optical MAU	331
Figure D.3 – Example of mixtu between wire and optical media for a 31,25 kbit/s bit rate	333
Figure D.4 – Example of mixture between wire and optical media	334
Figure F.1 – Pin connector for short range optical medium	337
Figure F.2 – Crimp ring for short range optical medium	337
Figure G.1 – PhL repeater device reference model	339
Figure G.2 – Reference model for redundan	
Figure G.3 – Block diagram showing redundant eaxial medium and NAP	343
Figure G 4 – Block diagram showing ring repeaters	344
Figure G 5 – Segmentation query	345
Figure G.6 – Segmentation response	345
Figure G.7 – Main switch state machine	347
Figure G.8 – Port 1 sees network activity first	348
Figure C.0 Port 2 soos notwork activity first	240
Figure H.1 Coaxial wire MALL PXDATA detector	251
Figure H 2 Coavial wire MAU ByCARDIER detection	252
Figure H.2 – Coaxial wife MAU KXCARRIER delection	250
Figure H.4 — Cincle channel ecoviel wire MAU transceiver	352
Figure H.4 – Single channel coaxial wire MAU transceiver	353
Figure H.S. – Coaxial wife filedium tap	354
Figure H.6 – Non-Isolated NAP transceiver	355
Figure H.7 – Isolated NAP transceiver	355
Figure 1.1 – Schematic of the station coupler	356
(A coding)	357
Figure I.3 – Connector pinout, front view of male and back view of female respectively	358
Figure I.4 – Connector pinout, front view of female M12 connector	360
Figure I.5 – Connector pinout, front view of male M12 connector	360
Figure I.6 – M12 Tee	361
Figure I.7 – M12 Bus termination	362
Figure J.1 – Redundancy of PhL MAU and Medium	363

Figure K.1 – Optical MAU in a network with echo	364
Figure K.2 – Optical MAU in a network without echo	
Figure K.3 – Optical MAU with echo via internal electrical feedback of the receive signal	365
Figure K.4 – Optical MAU without echo function	
Figure K.5 – Optical network with star topology	366
Figure K.6 – Optical network with ring topology	
Figure K.7 – Optical network with bus topology	
Figure K.8 – Treestructure built from a combination of star structures	
Figure K.9 – Application example for an ANSI TIA/EIA-485-A / fiber optic converter	368
Figure L.1 – Bus termination integrated in the communication device	373
Figure L.2 – Bus termination in the connector	374
Figure L.3 – External bustermination	374
Figure M.1 – Outgoing interface 9-position female subminiature D connector at the device	
Figure M.2 – Incoming interface position male subminiature D connector at the	075
Figure M.2. Terminal connector at the device	
Figure M.4 – Ferrule of en enticel E.SM® connector for polymer enticel fiber	
(980/1 000 μ m)	
Figure M.5 – Type 8 fiber optic hybrid connector housing	377
Figure M.6 – Type 8 fiber optic hybrid connector assignment	
Figure O.1 – Topology	
Figure O.2 – Structure of a single-core cable (example)	384
Figure O.3 – Optical power levels	385
Figure P.1 – Example of an implemented DPLL	
Figure P.2 – DPLL status diagram	388
Figure P.3 – DPLL timing	388
Figure Q.1 – PhL-P device connector r-a	390
Figure Q.2 – PhL-P device connector straight	391
Figure Q.3 – PhL-P flat cable connector and terminal cover – body and connector	391
Figure Q.4 – PhL-P flat cable connector and terminal cover – terminal cover	392
Figure Q.5 – Type 18-PhL-P round cable connector body	392
Figure Q.6 – Type 18-PhL-P round cable connector terminal cover	393
Figure Q.7 – Type 18-PhL-P round cable alternate connector and body	393
Figure Q.8 – Type 18-PhL-P round cable alternate connector terminal cover	394
Figure R.1 – PhL-B cable cross section twisted drain	395
Figure R.2 – PhL-B cable cross section non-twisted drain	396
Figure R.3 – PhL-P flat cable cross section - with key	397
Figure R.4 – PhL-P flat cable cross section - without key	397
Figure R.5 – PhL-P flat cable polarity marking	397
Figure R.6 – Round cable – preferred; cross section	398
Figure R.7 – Round cable – alternate; cross-section	398

,0
31
31
78
79
30
31
31
32
32
33
33
33
34
34
34
35
35
37
37
38
39
50
10
90 90
90 90 90 91
303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030<
 30 <
 30 <
 30 30 30 30 31 35 36 36 36 36 36
 30 30 30 30 31 35 36 <
 30 30 30 30 31 35 36 <
90 90 91 95 96 96 96 96 96 96 96 98
90 90 91 95 96 96 96 96 96 95 96 96 95 96 96 95 96 95 96 95 96 96 97 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97
90 90 91 95 96 96 96 96 96 95 96 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 96 95 96 96 95 96 96 95 96 96 95 96 96 95 96 96 96 96 96 96 96 96 95 96 96 96 96 96 96 96 96 96 96 96 96 96
90 90 90 91 95 96 96 95 96 96 97 96 96 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 97 96 96 96 97 96 96 96 97 96 96 96 97 96 96 96 97 96 96 96 97 96 96 96
20 20 20 20 20 20 20 20 20 20
90 90 90 91 95 96 96 95 96 95 96 96 97 96 98 96 99 96 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 96 97 97 97 97
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 20 22 20 22 20 27 27
20 20 20
20 20 <td< td=""></td<>
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 <td< td=""></td<>

Table 44 – Minimum services at MDS – MAU interface	135
Table 45 – Signal levels for an exposed MDS – MAU interface	136
Table 46 – MDS-MAU interface definitions: 5 Mbit/s, voltage-mode, coaxial wire	137
Table 47 – MDS-MAU interface 5 Mbit/s, optical fiber medium	138
Table 48 – Services of the MDS-MAU interface	140
Table 49 – Minimum services at MAU interface	142
Table 50 – Signal levels for an exposed MAU interface	142
Table 51 – Bit-rate-dependent quantities of voltage-mode networks	143
Table 52 – MAU transmit level specification summary	146
Table 53 – MAU transmit timing specification summary for 31,25 kbit/s operation	146
Table 54 – MAU transit timing specification summary for \geq 1 Mbit/s operation	147
Table 55 – MAU receiverircuit specification summary	151
Table 56 – Network powered device characteristics	153
Table 57 – Network power supply requirements	153
Table 58 – Test cable attenua kimits	156
Table 59 – Recommended color coting of cables in North America	157
Table 60 – MAU transmit level specification summary	161
Table 61 – MAU transmit timing specification summary	161
Table 62 – MAU receive circuit specification summary	164
Table 63 – Network powered device characteristics	166
Table 64 – Network power supply requirements	166
Table 65 – Type 3 cable color specification	174
Table 66 – MAU transmit level specification summary	178
Table 67 – MAU transmit timing specification summation	178
Table 68 – Receive circuit specification summary	180
Table 69 – Network power supply requirements	182
Table 70 – Transmit level specification summary for current mode MAU	188
Table 71 – Transmit timing specification summary for current-mode MAU	188
Table 72 – Receive circuit specification summary for current-mode	190
Table 73 – Network power supply requirements	191
Table 74 – Bit-rate-dependent quantities of high-speed (≥1 Mbit/s) dual fiber networks	194
Table 75 – Transmit level and spectral specification summary	196
Table 76 – Transmit timing specification summary	196
Table 77 – Receive circuit specification summary	197
Table 78 – Transmit and receive level and spectral specifications for an optical active star	200
Table 79 – Timing characteristics of an optical active star.	200
Table 80 – Transmit level and spectral specification summary	202
Table 81 – Transmit and receive level and spectral specifications for an optical active	
star	204
Table 82 – Interfering frequencies for testing receiver performance	213
Table 83 – Transmit control line definitions 5 Mbit/s, voltage-mode, coaxial wire	216
Table 84 – Receiver data output definitions: 5 Mbit/s, voltage-mode, coaxial wire	217
Table 85 - Receiver carrier output definitions: 5 Mbit/s, voltage-mode, coaxial wire	217

Table 86 – Coaxial wire medium interface – transmit specifications	218
Table 87 – Coaxial wire medium interface – receive	219
Table 88 – Coaxial wire medium interface – general	220
Table 89 – 5 Mbit/s, voltage-mode, coaxial wire transformer electrical specifications	221
Table 90 – Coaxial spur cable specifications	225
Table 91 – Coaxial trunk cable specifications	225
Table 92 – Transmit control line definitions 5 Mbit/s, optical fiber medium	227
Table 93 – Fiber medium interface 5,0 Mbit/s, optical	227
Table 94 – Fiber Signal specification 5 Mbit/s, optical medium, short range	228
Table 95 – Fiber Signal specification 5 Mbit/s, optical medium, medium range	229
Table 96 – Fiber signal specification 5 Mbit/s, optical medium, long range	230
Table 97 – NAP requirements	232
Table 98 – Mixing devices from different categories	235
Table 99 – Input Impedances of bus interfaces and power supplies	238
Table 100 – Required CMRR	241
Table 101 – Network powered device characteristics for the 31,25 kbit/s voltage-mode MAU	241
Table 102 – Network power supply requirements for the 31,25 kbit/s voltage-mode	
	242
Table 103 – Electrical characteristics of Help us interfaces	247
Table 104 – Electrical characterístics of powersupplies	248
Table 105 – Characteristics for non intrinsic safety	252
Table 106 – Characteristics using repeaters	252
Table 107 – Cable specifications	254
Table 108 – Maximum cable length for the different targinission speeds	254
Table 109 – Characteristics for Intrinsic safety	257
Table 110 – Cable specification (function- and safety-related	260
Table 111 – Maximum cable length for the different transmission speeds	200
Table 112 – Electrical characteristics of the intrinsically safe internace	203
Table 113 – Maximum safety values	207
Table 114 – Characteristic reduies	200
Table 115 – Characteristics of optical transmitters for single mode glass liber	27 1
Table 117 – Characteristics of optical transmitters for single-mode glass to an inter-	272
Table 117 – Characteristics of optical transmitters for 200/220 um glass fiber	272
Table 110 – Characteristics of optical transmitters for 200/230 µm glass liber	212
Table 119 – Characteristics of optical receivers for multi-mode glass fiber	273
Table 120 – Characteristics of optical receivers for single-mode glass liber	273
Table 121 – Characteristics of optical receivers for plastic liber	213
Table 122 – Gnaracteristics of optical receivers for $200/230 \mu\text{m}$ glass liber	274
transmitter	274
Table 124 – Permissible signal distortion due to the optical transmitter	275
Table 125 – Permissible signal distortion due to the optical receiver	276

Table 126 – Permissible signal influence due to internal electronic circuits of a coupling component	276
Table 127 – Maximum chaining of standard optical links without retiming	277
Table 128 – Services of the MDS-MAU interface, RS-485, Type 4	278
Table 129 – Services of the MDS-MAU interface, RS-232, Type 4	280
Table 130 – Bit rate dependent quantities twisted pair wire medium MAU	281
Table 131 – Incoming interface signals	282
Table 132 – Outgoing interface signals	283
Table 133 – Remote bus cable characteristics	284
Table 134 – Bit rate dependent quantities optical MAU	286
Table 135 – Remote by fiber optic cable length	287
Table 136 – Encoding Oes	287
Table 137 - Transmit level and spectral specification summary for an optical MAU	287
Table 138 – Optical MAU receive circuit specification summary	289
Table 139 – Specification of the jiber optic waveguide	289
Table 140 – Specification of the single fiber	290
Table 141 – Specification of the cable sheath and mechanical properties of the cable	290
Table 142 – Recommended further material properties of the cable	290
Table 143 – Specification of the fiber or waveguide	291
Table 144 – Specification of the single fite	291
Table 145 – Specification of the cable sheat and mechanical properties of the cable	291
Table 146 – Specification of the standard test fiber for an optical MAU	292
Table 147 – Transmission rate support	297
Table 148 – Transmission data parameters	298
Table 149 – Possible slave input signals	300
Table 150 – Possible slave output signals	300
Table 151 – Valid slave output signals	301
Table 152 – Specifications of the clock adjustment times	301
Table 153 – Optical signal delay in a slave	301
Table 154 – Basic functions of the connection	302
Table 155 – Pass-through topology limits	309
Table 156 – T-branch topology limits	310
Table 157 – Terminating resistor requirements	310
Table 158 – Pass-through topology limits	314
Table 159 – T-branch topology limits	314
Table 160 – Terminating resistor requirements – flat cable	315
Table 161 – Terminating resistor requirements – round cable	315
Table 162 – 24 V Power supply specifications	316
Table 163 – 24V Power consumption specifications	317
Table A.1 – Internal connector dimensions	320
Table A.2 – Contact assignments for the external connector for harsh industrial environments	321
Table A.3 – Contact assignments for the external connector for typical industrial	
environments	325

Table A.4 – Fixed (device) side connector dimensions	325
Table A.5 – Free (cable) side connector dimensions	326
Table A.6 – Connector dimensions	327
Table B.1 – Typical cable specifications	328
Table B.2 – Recommended maximum spur lengths versus number of communication elements	329
Table C.1 – Optical passive star specification summary: example	330
Table D.1 – Passive star topology	332
Table D.2 – Active star topology	333
Table E.1 – Alternate fibers for dual-fiber mode	335
Table E.2 – Alternate fibers for single-fiber mode	335
Table F.1 – Connector equirements	336
Table F.2 – NAP connector pin definition	338
Table H.1 – 5 Mbit/s, voltage mode, coaxial wire receiver output definitions	351
Table H.2 – Coaxial wire median toroid specification	354
Table I.1 – Contact assignments for the external connector for harsh industrial environments	356
Table I.2 – Contact designations	358
Table I.3 – Contact designations	359
Table I.4 – Contact designations	359
Table K.1 – Example of a link budget calculation for 62,5/125 μ m multi-mode glass fiber	370
Table K.2 – Example of a link budget calculation $(0, 9/125 \mu m single mode glass fiber)$	371
Table K.3 – Example of a link budget calculation for $80/1000 \ \mu m$ multi-mode plastic fiber.	371
Table K.4 – Example of a level budget calculation for 200230 μ m multi-mode glass	
fiber	372
Table M.1 – Pin assignment of the 9-position subminiature peonnector	375
Table M.2 – Pin assignment of the terminal connector	376
Table M.3 – Type 8 fiber optic hybrid connector dimensions	379
Table O.1 – Transmitter specifications	383
Table O.2 – Receiver specifications	383
Table O.3 – Cable specifications (example)	384
Table O.4 – System data of the optical transmission line at 650 nm	385
Table R.1 – PhL-B cable specifications	395
Table R.2 – PhL-P flat cable specifications	396
Table R.3 – PhL-P round cable specifications – preferred	397
Table R.4 – PhL-P round cable specifications – alternate	398

0 Introduction

0.1 General

This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC/TR 61158-1.

0.2 Physical layer overview

The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer Ph-entities at the time of communication.

The physical layer receives data units from the data-link Layer, encodes them, if necessary by adding communications framing information, and transmits the resulting physical signals to the transmission medun at one node. Signals are then received at one or more other node(s), decoded, if necessary by removing the communications framing information, before the data units are passed to the data-link Layer of the receiving device.

0.3 **Document overview**

This standard comprises physical layer specifications corresponding to many of the different DL-Layer protocol Types specified in EC 61158-4-1 to IEC 61158-4-18.

NOTE 1 The protocol Type numbers used are onsistent throughout the IEC 61158 series.

NOTE 2 Specifications for Types 1, 2, 3, 4, 8, Total 18 are included. Type 7 uses Type 1 specifications. The other Types do not use any of the specifications given othis standard.

NOTE 3 For ease of reference, Type numbers are given belause names. This means that the specification given therein applies to this Type, but does not exclude its use for other Types.

NOTE 4 It is up to the user of this standard to select interviewating sets of provisions. Refer to the IEC 61784 series for standardized communication profiles based on the IEC 61158 series.

A general model of the physical layer is shown in Figure

The common characteristics for all variants and types are afollows:

- digital data transmission;
- no separate clock transmission;
- no separate clock transmission, either half-duplex communication (bi-directional but in only one direction at a time) or full-duplex communication.