TECHNICAL REPORT

75.00

CISPR 16-4-5

> First edition 2006-10

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

Reference number CISPR 16-4-5/TR:2006(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (www.iec.ch) .

Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published •

> This summary of recently issued publications (www.iec.ch/online_news/ justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre •

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: custserv@iec.ch Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

TECHNICAL REPORT

17:500

CISPR 16-4-5

> First edition 2006-10

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods -

Part 4-5: Uncertainties, statistics and limit modelling -Conditions for the use of alternative test methods th Chief Control of Co

© IEC 2006 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

For price, see current catalogue

CONTENTS

FOI	REWC	RD	4			
	Ż					
1	Scop	e	6			
2	Norm	ative references	6			
3	Term	s and definitions	6			
4	Symb	ols and abbreviated terms	7			
5	Introduction					
6	Proce	edure to derive limits for an alternative test method	9			
	6.1	Overview	9			
	6.2	Select the reference quantity X				
	6.3	Describe the test methods and measurands	12			
	6.4	Determine the deviations of the measured quantities from the reference quantity	13			
	6.5	Determine the average values of the deviations				
	6.6	Estimate the standard uncertainties of the test methods	14			
	6.7	Estimate the expanded uncertainties of the test methods	15			
	6.8	Calculate the average conversion factor				
	6.9	Verify the calculated values				
	6.10	Apply the conversion	17			
		informative) Remarks on EUT modelling	18			
		(informative) Examples of application of the test method comparison	10			
pro	Jeuure					
Dih	ioarar	ohy	10			
טוס	iograp	, ing	49			
Fig	ure 1 -	- Overview of quantities to estimate for use in conversion procedure	10			
Fig	ure 2 -	- Overview of limit conversion procedure using estimated quantities	11			
Fig	ure B.	1 – Example reference quantity	19			
Fig	Figure B.2 – EUT and antenna set-up for fully anechoic room emission measurement2					
Fig	ure B.3	3 – EUT and antenna set-up for open-area test site measurement	20			
Fig	ure B.4	4 – Radiation characteristics of elementary radiator (left), and scheme of				
EU	Г-mod	el (right)	21			
-		5 – Maximum average deviations for 3 m FAR (top) and 10 m OATS (bottom)				
Fig	ure B.	6 – Sample cumulative distribution function	26			
and	10 m	7 – Uncertainties due to the unknown EUT characteristic for 3 m FAR (top) OATS (bottom)	28			
Fig esta	ure B.a ablishe	8 – Expanded uncertainties ($k = 2$) of alternative (3 m FAR, top) and ed (10 m OATS, bottom) test methods	. 32			
		9 – Maximum average conversion factors for different volumes				
		10 – Photo (left) and cut-view of simulation model (right) of the specimen EUT				
-	Figure B.11 – Deviations of the specimen EUT: 3 m fully anechoic room (top) and 10 m					
			~~			
ope	n area	a test site (bottom)	36			
•		a test site (bottom) 12 – Sample FAR measurement				

TR CISPR 16-4-5 © IEC:2006(E) - 3 -

Figure B.14 – Expanded uncertainties	37
Figure B.15 – Comparison of the measured values with the corrected converted limit	38
Figure B.16 – EUT and antenna set-up of 3 m open area test site measurement	39
Figure B.17 – Maximum average deviations for 3 m OATS	40
Figure B.18 – Uncertainties due to the unknown EUT characteristic for 3 m OATS	41
Figure B.19 – Expanded uncertainties ($k = 2$) of alternative test method [OATS (3 m)]	43
Figure B.20 – Maximum average conversion factors	44
Figure B.21 – Deviations of the specimen EUT: Open area test site (3 m)	46
Figure B.22 – Sample OATS (3 m) measurement	47
Figure B.23 – OATS (10 m) limit line converted to OATS (3 m) conditions	47
Figure B.24 – Expanded uncertainties	48
Figure B.25 – Comparison of the corrected values with the converted limit	48

Figure B.25 – Comparison of the corrected values with the converted limit	48
Table 1 – Summary of steps in conversion procedure	9
Table 2 – Overview of quantities and defining equations for conversion process	12
Table B.1 – Instrumentation uncertainty of the 3 m fully anechoic chamber test method	25
Table B.2 – Uncertainties in dB due to the unknown EUT characteristic for 3 m FAR	30
Table B.3 – Uncertainties in dB due to the unknown EUT characteristic for 10 m OATS	31
Table B.4 – Maximum average conversion factors in dB between 10 m OATS and 3 m FAR	34
Table B.5 – Uncertainties in dB due to the unknown EUT characteristic for 3 m OATS	42
Table B.6 – Maximum average conversion factors in dB between 10 m and 3 m OATS	45

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

CISPR 16-4-5, which is a technical report, has been prepared by CISPR subcommittee A: Radio-interference measurements and statistical methods.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
CISPR/A/665/DTR	CISPR/A/685/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

TR CISPR 16-4-5 © IEC:2006(E) - 5 -

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the CISPR 16-4 series, published under the general title *Specification for* radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainties, statistics and limit modelling, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date. is a preview of nerved by they

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

1 Scope

This part of CISPR 16-4 specifies a method to enable product committees to develop limits for alternative test methods, using conversions from established limits. This method is generally applicable for all kinds of disturbance measurements, but focuses on radiated disturbance measurements (i.e. field strength), for which several alternative methods are presently specified. These limits development methods are intended for use by product committees and other groups responsible for defining emissions limits in situations where it is decided to use alternative test methods and the associated limits in product standards.

2 Normative references

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility

CISPR 16-4-1:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-1: Uncertainties, statistics and limit modelling – Uncertainty in standardized EMC tests

CISPR 16-4-2:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-161 and the following apply.

3.1

established test method

test method described in a basic standard with established emissions limits defined in corresponding product or generic standards. An established test method consists of a specific test procedure, a specific test set-up, a specific test facility or site, and an established emissions limit

NOTE The following test methods have been considered to be established test methods in CISPR:

- conducted disturbance measurements: test method defined in CISPR 16-2-1:2003, Clause 7;
- radiated disturbance measurements up to 1 GHz: the test method defined in CISPR 16-2-3, 7.2.1;
- radiated disturbance measurements up to 18 GHz: the test method defined in CISPR 16-2-3, 7.3.

3.2

alternative test method

test method described in a basic standard without established emissions limits. The alternative test method is designed for the same purpose as the established test method. An alternative test method consists of a specific test procedure, a specific test set-up, a specific test facility or site, and a derived emissions limit that was determined by the application of the proposed method stated in this document