Communication networks and systems in substations - Part 7-4: Basic communication structure for substation and feeder equipment - Compatible logical node classes and data classes

Communication networks and systems in substations - Part 7-4: Basic communication structure for substation and feeder equipment - Compatible logical node classes and data classes

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

Käesolev Eesti standard EVS-EN 61850-
7-4:2003 sisaldab Euroopa standardi EN
61850-7-4:2003 ingliskeelset teksti.

Käesolev dokument on jõustatud 09.09.2003 ja selle kohta on avaldatud teade Eesti standardiorganisatsiooni ametlikus väljaandes.

Standard on kättesaadav Eesti standardiorganisatsioonist.

This Estonian standard EVS-EN 61850-7-4:2003 consists of the English text of the European standard EN 61850-7-4:2003.

This document is endorsed on 09.09.2003 with the notification being published in the official publication of the Estonian national standardisation organisation.

The standard is available from Estonian standardisation organisation.

Käsitlusala:

Specifies the information model of devices and functions related to substation applications. Specifies in particular the compatible logical node names and data names for communication between Intelligent Electronic Devices, which includes the relationship between Logical Nodes and Data

Scope:

Specifies the information model of devices and functions related to substation applications. Specifies in particular the compatible logical node names and data names for communication between Intelligent Electronic Devices, which includes the relationship between Logical Nodes and Data

ICS 33.200

Võtmesõnad: buildings, electric, electrical engineering, electrical equ, electrical protection equipment, electronic equipment, energy supply systems (buildings), power supplies, signal transmission, specification (approval), specifications, substation, telecommunications

EUROPEAN STANDARD

EN 61850-7-4

NORME EUROPÉENNE

EUROPÄISCHE NORM

June 2003

ICS 33.200

English version

Communication networks and systems in substations Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes

(IEC 61850-7-4:2003)

Réseaux et systèmes de communication dans les postes
Partie 7-4: Structure des communications de base pour les postes électriques et les équipements de lignes –
Classes de données et classes de noeuds logiques compatibles
(CEI 61850-7-4:2003)

Kommunikationsnetze und -systeme in Stationen Teil 7-4: Grundlegende Kommunikationsstruktur für stations- und feldbezogene Ausrüstung – Kompatible Logikknoten- und Datenklassen (IEC 61850-7-4:2003)

This European Standard was approved by CENELEC on 2003-06-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

Foreword

The text of document 57/622/FDIS, future edition 1 of IEC 61850-7-4, prepared by IEC TC 57, Power system control and associated communications, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61850-7-4 on 2003-06-01.

The following dates were fixed:

 latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement

(dop) 2004-03-01

latest date by which the national standards conflicting with the EN have to be withdrawn

(dow) 2006-06-01

Annexes designated "normative" are part of the body of the standard. Annexes designated "informative" are given for information only. In this standard, annexes A and ZA are normative and annexes B and C are informative. Annex ZA has been added by CENELEC.

Endorsement notice

6 50-7-4:26 The text of the International Standard IEC 61850-7-4:2003 was approved by CENELEC as a European Standard without any modification.

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<u>Publication</u>	Year	<u>Title</u>	EN/HD	<u>Year</u>
IEC 60255-24	- 1)	Electrical relays Part 24: Common format for transient data exchange (COMTRADE) for power systems	EN 60255-24	2001 2)
IEC 61000-4-7	_ 1)	Electromagnetic compatibility (EMC) Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto	EN 61000-4-7	2002 2)
IEC/TS 61850-2	_ 1)	Communication networks and systems in substations Part 2: Glossary	-	-
IEC 61850-5	_ 1)	Part 5: Communication requirements for functions and devices models	-	-
IEC 61850-7-1	_ 1)	Part 7-1: Basic communication structure for substation and feeder equipment - Principles and models		-
IEC 61850-7-2	_ 1)	Part 7-2: Basic communication structure for substation and feeder equipment - Abstract communication service interface (ACSI)	EN 61850-7-2	2003 ²⁾
IEC 61850-7-3	_ 1)	Part 7-3: Basic communication structure for substation and feeder equipment - Common data classes	EN 61850-7-3	2003 2)

¹⁾ Undated reference.

²⁾ Valid edition at date of issue.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEEE 519	1992	IEEE Recommended Practises and Requirements for Harmonic Control in Electrical Power Systems	-	-
IEEE 1459	2000	IEEE Trial Use Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced or Unbalanced Conditions	-	-
IEEE C37.2	1996	Electrical Power System Device Function Numbers and Contact Designation	-	-
		0.		
		O,		
		OL.		
		4		
		0		
			Š	
			9/	
			2	
				5

INTERNATIONAL STANDARD

IEC 61850-7-4

First edition 2003-05

Communication networks and systems in substations –

Part 7-4:

Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (www.iec.ch)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (http://www.iec.ch/searchpub/cur_fut.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (http://www.iec.ch/online news/ justpub/jp entry.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: custserv@iec.ch Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

IEC 61850-7-4

First edition 2003-05

Communication networks and systems in substations –

Part 7-4:

Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes

© IEC 2003 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE

CONTENTS

FO	REWO	ORD		6
IN	rodi	JCTION		8
1	Scop	e		9
2	Norm	native re	ferences	10
3	Term	s and d	efinitions	11
4			terms	
5			classes	
•	5.1		Node groups	
	5.2	•	etation of Logical Node tables	
	5.3		n Logical NodesLN Group: L	
	0.0	5.3.1	General	
		5.3.2	LN: Physical device informationName: LPHD	
		5.3.3	Common Logical Node	
		5.3.4	LN: Logical node zeroName: LLN0	
	5.4	Logical	Nodes for protection functionsLN Group: P	
		5.4.1	Modelling remarks	
		5.4.2	LN: DifferentialName: PDIF	21
		5.4.3	LN: Direction comparisonName: PDIR	22
		5.4.4	LN: DistanceName: PDIS	22
		5.4.5	LN: Directional overpowerName: PDOP	23
		5.4.6	LN: Directional underpowerName: PDUP	
		5.4.7	LN: Rate of change of frequencyName: PFRC	
		5.4.8	LN: Harmonic restraintName: PHAR	
		5.4.9	LN: Ground detectorName: PHIZ	
			LN: Instantaneous overcurrentName: PIOC	
			LN: Motor restart inhibitionName: PMRI	
			LN: Motor starting time supervisionName: PMSS	
			LN: Over power factorName: POPF	
		5.4.14	LN: Phase angle measuringName: PPAM	27
		5.4.15	LN: Protection schemeName: PSCH	27
			LN: Sensitive directional earthfaultName: PSDE	
			LN: Transient earth faultName: PTEF	
			LN: Time overcurrentName: PTOC	
			LN: OvervoltageName: PTOV	
			LN: Protection trip conditioningName: PTRC	
			LN: Thermal overloadName: PTTR	
			LN: UndercurrentName: PTUC	
			LN: UndervoltageName: PTUV	
			LN: Underpower factorName: PUPF	
			LN: UnderfrequencyName: PTUF	
			LN: Voltage controlled time overcurrentName: PVOC	
			LN: Volts per HzName: PVPH	
			LN: Zero speed or underspeedName: PZSU	
			•	

5.5		Nodes for protection related functionsLN Group: R	
	5.5.1	Modelling Remarks	
	5.5.2	LN: Disturbance recorder functionName: RDRE	
	5.5.3	LN: Disturbance recorder channel analogueName: RADR	
9.	5.5.4	LN: Disturbance recorder channel binaryName: RBDR	
	5.5.5	LN: Disturbance record handlingName: RDRS	38
	5.5.6	LN: Breaker failureName: RBRF	38
	5.5.7	LN: Directional elementName: RDIR	38
	5.5.8	LN: Fault locatorName: RFLO	39
	5.5.9	LN: Power swing detection/blockingName: RPSB	39
	5.5.10	LN: AutoreclosingName: RREC	40
	5.5.11	LN: Synchronism-check or synchronisingName: RSYN	41
5.6		Nodes for controlLN Group: C	
	5.6.1	Modelling remarks	42
	5.6.2	LN: Alarm handlingName: CALH	42
	5.6.3	LN: Cooling group controlName: CCGR	42
	5.6.4	LN: InterlockingName: CILO	
	5.6.5	LN: Point-on-wave switchingName: CPOW	
	5.6.6	LN: Switch controllerName: CSWI	
5.7		nodes for generic referencesLN Group: G	
	5.7.1	LN: Generic automatic process controlName: GAPC	
	5.7.2	LN: Generic process I/OName: GGIO	
	5.7.3	LN: Generic security applicationName: GSAL	
5.8		Nodes for interfacing and archivingLN Group: I	
0.0	5.8.1	LN: ArchivingName: IARC	
	5.8.2	LN: Human machine interfaceName: IHMI	
	5.8.3	LN: Telecontrol interfaceName: ITCI	
	5.8.4	LN: Telemonitoring interfaceName: ITMI	
5.9		Nodes for automatic controlLN Group: A	
5.9	5.9.1	Modelling remarks	
	5.9.2	LN: Neutral current regulatorName: ANCR	
	5.9.2	LN: Reactive power controlName: ARCO	
		LN: Automatic tap changer controllerName: ATCC	
	5.9.4	LN: Voltage controlName: AVCO	
E 10	5.9.5	Nodes for metering and measurementLN Group: M	
5.10			
		Modelling remarksLN: Differential measurementsName: MDIF	
		LN: Harmonics or interharmonicsName: MHAI	
		LN: Non phase related harmonics or interharmonicsName: MHAN	
		LN: MeteringName: MMTR	
		LN: Non phase related MeasurementName: MMXN	
		LN: MeasurementName: MMXU	
		LN: Sequence and imbalanceName: MSQI	
		LN: Metering StatisticsName: MSTA	
5.11	•	Nodes for sensors and monitoringLN Group: S	
		Modelling remarks	
		LN: Monitoring and diagnostics for arcsName: SARC	
	5 11 3	LN: Insulation medium supervision (gas)Name: SIMG	57

		5.11.4	LN: Insulation medium supervision (liquid)Name: SIML	58
			LN: Monitoring and diagnostics for partial dischargesName: SPDC	
	5.12	Logical	Nodes for switchgearLN Group: X	59
			LN: Circuit breakerName: XCBR	
			LN: Circuit switchName: XSWI	
	5.13	_	Nodes for instrument transformersLN Group: T	
			LN: Current transformerName: TCTR	
			LN: Voltage transformerName: TVTR	
	5.14		Nodes for power transformersLN Group: Y	
			LN: Earth fault neutralizer (Petersen coil)Name: YEFN	
			LN: Tap changerName: YLTC	
			LN: Power shuntName: YPSH	
			LN: Power transformerName: YPTR	
	5.15	_	Nodes for further power system equipmentLN Group: Z	
			LN: Auxiliary networkName: ZAXN	
			LN: BatteryName: ZBAT	
			LN: BushingName: ZBSH	
			LN: Power cableName: ZCAB	
			LN: Capacitor bankName: ZCAP	
			LN: ConverterName: ZCON	
			LN: GeneratorName: ZGENLN: Gas insulated lineName: ZGIL	
			LN: Power overhead lineName: ZLIN	
			LN: MotorName: ZMOT	
		5.15.10	LN: ReactorName: ZREA	67
			LN: Rotating reactive componentName: ZRRC	
			LN: Surge arrestorName: ZSAR	
			LN: Thyristor controlled frequency converterName: ZTCF	
			LN: Thyristor controlled reactive componentName: ZTCR	
6	Data		emantics	
Δnn	εν Δ ι	(normati	ve) Extension rules	91
			ogical Nodes and Data and its extensions	
Α. ι	1116	126 OL F	ulesules	91
۸ ۵				
A.2			nces of LN classes for dedicated and complex functions	
			le for time overcurrent	
			le for Distance	
		•	le for Power transformer	
۸ ۵		•	le for Auxiliary network	
			n of Data by use of the number extension	
			nes of new Logical Nodes	
A.5		•	new LNs	
			N "Automatic door entrance control"	
			N "Fire protection"	
			nes of new Data	
A.7	Exam	ple for i	new Data	93
8.A	Rules	for nev	v Common Data Classes (CDC)	94

Annex B (informative) Modelling examples	95
B.1 PTEF and PSDE	95
B.2 PSCH and PTRC	96
B.3 MDIF and PDIF	97
B.4 RDRE and Disturbance Recorder	98
B.5 PTRC	99
B.6 PDIR 100	
B.7 RREC	101
B.8 PDIS 102	
Annex C (informative) Relationship between this standard and IEC 61850-5	104
Figure 1 – Overview of this standard	10
Figure 2 – LN Relationships	17
Figure B.1 – Fault current $I_{\rm F}$ in a compensated network with earth fault	95
Figure B.2 – Use of PSCH and PTRC	96
Figure B.3 – Use of MDIF and PDIF	97
Figure B.4 – Modelling of Disturbance Recorder	98
Figure B.5 – Examples for allocation of Logical Nodes to IEDs	99
Figure B.6 – Use of PDIR	
Figure B.7 – Use of RREC	101
Table 1 – List of Logical Node Groups	15
Table 2 – Interpretation of Logical Node tables	16
Table 3 – Relation between IEC 61850-5 and IEC 61850-7-4 (this standard) for	
protection LNs	20
Table 4 $-$ Relation between IEC 61850-5 and IEC 61850-7-4 for protection related LNs \dots	
Table 5 – Relation between IEC 61850-5 and IEC 61850-7-4 for control LNs	42
Table 6 - Relation between IEC 61850-5 and IEC 61850-7-4 for automatic control LNs	47
Table 7 – Relation between IEC 61850-5 and IEC 61850-7-4 for metering and measurement LNs	50
Table 8 – Relation between IEC 61850-5 and IEC 61850-7-4 for sensors and monitoring LNs	57
Table 9 – Description of Data	69
Table C.1 – Relationship between IEC 61850-5 and this standard for some miscellaneous I Ns	104

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS IN SUBSTATIONS -

Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61850-7-4 has been prepared by IEC technical committee 57: Power system control and associated communications.

The text of this standard is based on the following documents:

FDIS	Report on voting
57/622/FDIS	57/640/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61850 consists of the following parts, under the general title Communication networks and systems in substations:

- Introduction and overview Part 1:
- Part 2: Glossary 1
- Part 3: General requirements
- Part 4: System and project management
- Part 5: Communication requirements for functions and device models 2
- Configuration description language for communication in electrical substations Part 6: related to IEDs 1
- Part 7-1: Basic communication structure for substation and feeder equipment Principles and models
- Part 7-2: Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI)
- Part 7-3: Basic communication structure for substation and feeder equipment Common data classes
- Part 7-4: Basic communication structure for substation and feeder equipment Compatible logical node classes and data classes
- Part 8-1: Specific communication service mapping (SCSM) Mappings to MMS (ISO/IEC 9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3 1
- Part 9-1: Specific communication service mapping (SCSM) Sampled values over serial unidirectional multidrop point to point link
- Part 9-2: Specific communication service mapping (SCSM) Sampled values over ISO/IEC 8802-3
- Part 10: Conformance testing 1

The content of this part of IEC 61850 is based on existing or emerging standards and applications. In particular the definitions are based upon:

- the specific data types defined in IEC 60870-5-101 and IEC 60870-5-103;
- the common class definitions from the Utility Communication Architecture 2.0: Generic Object Models for Substation and Feeder Equipment (GOMSFE) (IEEE TR 1550);
- CIGRE Report 34-03, Communication requirements in terms of data flow within substations, December 1996.

The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be 5/12/5

- reconfirmed:
- withdrawn;
- replaced by a revised edition, or
- amended.

¹ Under consideration.

² To be published.

INTRODUCTION

This part of IEC 61850 is a part of set of specifications (IEC 61850). IEC 61850 defines a substation communication architecture. This architecture has been chosen to provide abstract definitions of classes and services such that the specifications are independent of specific protocol stacks, implementations, and operating systems. The mapping of these abstract classes and services to communication stacks is outside the scope of IEC 61850-7-x and may be found in IEC 61850-8-x and in IEC 61850-9-x.

IEC 61850-7-1 gives an overview of this communication architecture. IEC 61850-7-3 defines common attribute types and common data classes related to substation applications. The attributes of the common data classes may be accessed using services defined in IEC 61850-7-2. These common data classes are used in this part to define the compatible data classes.

To reach interoperability, all data in the data model need a strong definition with regard to syntax and semantics. The semantics of the data is mainly provided by names assigned to logical nodes and data they contain, as defined in this part. Interoperability is easiest if as much as possible of the data are defined as mandatory. Because of different philosophies and technical features, settings were declared as optional in this edition of the standard. After some experience has been gained with this standard, this decision may be reviewed in an amendment or in the next revision of this part.

It should be noted that data with full semantics is only one of the elements required to achieve interoperability. Since data and services are hosted by devices (IED), a proper device model is needed along with compatible, domain specific services (see IEC 61850-7-2).

The compatible logical node name and data name definitions found in this part and the associated semantics are fixed. The syntax of the type definitions of all data classes are abstract definitions provided in IEC 61850-7-2 and IEC 61850-7-3. Not all features of logical nodes are listed in this part for example data sets and logs are covered in IEC 61850-7-2.

COMMUNICATION NETWORKS AND SYSTEMS IN SUBSTATIONS -

Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes

1 Scope

This part of IEC 61850 specifies the information model of devices and functions related to substation applications. In particular, it specifies the compatible logical node names and data names for communication between Intelligent Electronic Devices (IED). This includes the relationship between Logical Nodes and Data.

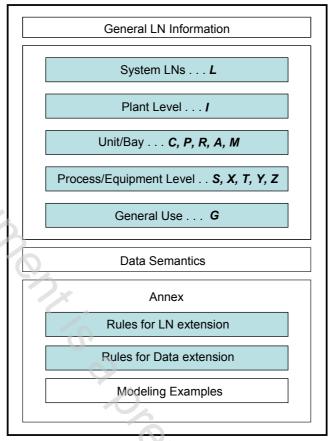
The Logical Node Names and Data Names defined in this document are part of the class model introduced in IEC 61850-7-1 and defined in IEC 61850-7-2. The names defined in this document are used to build the hierarchical object references applied for communicating with IEDs in substations and on distribution feeders. The naming conventions of IEC 61850-7-2 are applied in this part.

To avoid private, incompatible extension rules this part specifies normative naming rules for multiple instances and private extensions of Logical Node (LN) Classes and Data Names.

In Annex A, all rules are given (making use of examples) for:

- multiple instances of logical node classes by use of a LN instance identification (ID);
- multiple instances of data by use of a data instance ID;
- selecting data not included in LN out of the complete data name set;
- creating new logical node classes and data names.

In Annex B, examples are given for:


- the use of Logical Nodes in complex situations like line protection schemes;
- multiple instances of Logical Nodes with different levels of functionality.

This part does not provide tutorial material. It is recommended those parts IEC 61850-5 and IEC 61850-7-1 be read first, in conjunction with IEC 61850-7-3, and IEC 61850-7-2. This part does not discuss implementation issues. The relationship between this standard and IEC 61850-5 is outlined in Annex C.

This standard is applicable to describe device models and functions of substation and feeder equipment. The concepts defined in this standard may also be applied to describe device models and functions for:

- substation to substation information exchange,
- substation to control centre information exchange,
- power plant to control centre information exchange,
- information exchange for distributed generation,
- information exchange for distributed automation, or
- information exchange for metering.

Figure 1 provides a general overview of this document.

IEC 1102/03

Figure 1 - Overview of this standard

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60255-24, Electrical relays – Part 24: Common format for transient data exchange (COMTRADE) for power systems

IEC 61000-4-7, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 7: General guide on harmonics and interharmonics measurements and instrumentation for power supply systems and equipment connected thereto

IEC 61850-2, Communication networks and system in substations – Part 2: Glossary ³

IEC 61850-5, Communication networks and systems in substations – Part 5: Communication requirements for functions and devices models

IEC 61850-7-1, Communication networks and systems in substations – Part 7-1: Basic communication structure for substation and feeder equipment – Principles and models

IEC 61850-7-2, Communication networks and systems in substations – Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)

³ To be published.

IEC 61850-7-3, Communication networks and systems in substations – Part 7-3: Basic communication structure for substation and feeder equipment – Common data classes

IEEE 519:1992, IEEE Recommended Practises and Requirements for Harmonic Control in Electrical Power Systems

IEEE 1459:2000, IEEE Trial Use Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced or Unbalanced Conditions

IEEE C37.2:1996, Electrical Power System Device Function Numbers and Contact Designation

3 Terms and definitions

For the purpose of this international standard the terms and definitions given in IEC 61850-24 and IEC 61850-7-2 apply.

4 Abbreviated terms

The following terms are used to build concatenated Data Names. For example, ChNum is constructed by using two terms "Ch" which stands for "Channel" and "Num" which stands for "Number". Thus the concatenated name represents a "channel number".

Term	Description	Term	Description
Α	Current	СВ	Circuit Breaker
Acs	Access	CDC	Common Data Class
ACSI	Abstract Communication Service Interface	CE	Cooling Equipment
Acu	Acoustic	Cf	Crest factor
Age	Ageing	Cfg	Configuration
Alm	Alarm	CG	Core Ground
Amp	Current non phase related	Ch	Channel
An	Analogue	Cha	Charger
Ang	Angle	Chg	Change
Auth	Authorisation	Chk	Check
Auto	Automatic	Chr	Characteristic
Aux	Auxiliary	Cir	Circulating
Av	Average	Clc	Calculate
В	Bushing	Clk	Clock, clockwise
Bat	Battery	Cls	Close
Beh	Behaviour	Cnt	Counter
Bin	Binary	Col	Coil
Blk	Block, blocked	Cor	Correction
Bnd	Band	Crd	Coordination
Во	Bottom	Crv	Curve
Сар	Capability	СТ	Current Transducer
Capac	Capacitance	Ctl	Control
Car	Carrier	Ctr	Center

⁴ Under consideration.