17:500

Piksekaitse. Osa 3: Ehitistele tekitatavad füüsikalised kahjustused ja oht elule

Protection against lightning - Part 3: Physical damage to n, rd Proview Generative With Report of the second se structures and life hazard

EESTI STANDARDIKESKUS

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

	This Estonian standard EVS-EN 62305-3:2011
sisaldab Euroopa standardi EN 62305-3:2011 ingliskeelset teksti.	consists of the English text of the European standard EN 62305-3:2011.
Standard on kinnitatud Eesti Standardikeskuse 31.03.2011 käskkirjaga ja jõustub sellekohase teate avaldamisel EVS Teatajas.	This standard is ratified with the order of Estonian Centre for Standardisation dated 31.03.2011 and is endorsed with the notification published in the official bulletin of the Estonian national standardisation organisation.
Euroopa standardimisorganisatsioonide poolt rahvuslikele liikmetele Euroopa standardi teksti kättesaadavaks tegemise kuupäev on 04.03.2011.	Date of Availability of the European standard text 04.03.2011.
Standard on kättesaadav Eesti standardiorganisatsioonist.	The standard is available from Estonian standardisation organisation.

PORCUE

ICS 29.020, 91.120.40

füüsikalised kahjustused, füüsilised kahjustused, oht elule, piksekaitse

Standardite reprodutseerimis- ja levitamisõigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonilisse süsteemi või edastamine ükskõik millises vormis või millisel teel on keelatud ilma Eesti Standardikeskuse poolt antud kirjaliku loata.

Kui Teil on küsimusi standardite autorikaitse kohta, palun võtke ühendust Eesti Standardikeskusega: Aru 10 Tallinn 10317 Eesti; <u>www.evs.ee</u>; Telefon: 605 5050; E-post: <u>info@evs.ee</u>

Right to reproduce and distribute belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without permission in writing from Estonian Centre for Standardisation.

If you have any questions about standards copyright, please contact Estonian Centre for Standardisation: Aru str 10 Tallinn 10317 Estonia; <u>www.evs.ee</u>; Phone: 605 5050; E-mail: <u>info@evs.ee</u>

EUROPEAN STANDARD

EN 62305-3

NORME EUROPÉENNE EUROPÄISCHE NORM

March 2011

ICS 29.020; 91.120.40

Supersedes EN 62305-3:2006 + corr. Nov.2006 + corr. Sep.2008 + A11:2009

English version

Protection against lightning -Part 3: Physical damage to structures and life hazard (IEC 62305-3:2010, modified)

Protection contre la foudre -Partie 3: Dommages physiques sur les structures et risques humains (CEI 62305-3:2010, modifiée) Blitzschutz -Teil 3: Schutz von baulichen Anlagen und Personen (IEC 62305-3:2010, modifiziert)

This European Standard was approved by CENELEC on 2011-01-02. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2011 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of the International Standard IEC 62305-3:2010, prepared by IEC TC 81, Lightning protection, together with common modifications prepared by the Technical Committee CENELEC TC 81X, Lightning protection, was submitted to the formal vote and was approved by CENELEC as EN 62305-3 on 2011-01-02.

This European Standard supersedes EN 62305-3:2006 + corr. Nov.2006 + corr. Sep.2008 + A11:2009.

This EN 62305-3:2011 includes the following significant technical changes with respect to EN 62305-3:2006 + corr. Nov.2006 + corr. Sep.2008 + A11:2009:

- 1) Minimum thicknesses of metal sheets or metal pipes given in Table 3 for air-termination systems are assumed as not able to prevent hot-spot problems.
- 2) Steel with electro-deposited copper is introduced as material suitable for LPS.
- 3) Some cross-sectional areas of LPS conductors were slightly modified.
- 4) For bonding purposes, isolating spark gaps are used for metal installations and SPD for internal systems.
- 5) Two methods simplified and detailed are provided for evaluation of separation distance.
- 6) Protection measures against injuries of living beings due to electric shock are considered also inside the structure.
- 7) Improved information for LPS in the case of structures with a risk of explosion are given in Annex D (normative).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2012-01-02
- latest date by which the national standards conflicting with the EN have to be withdrawn

2014-01-02

Endorsement notice

The text of the International Standard IEC 62305-3:2010 was approved by CENELEC as a European Standard with agreed common modifications as given below.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

[2] IEC 61400-24 NOTE Harmonized as EN 61400-24.

COMMON MODIFICATIONS

Through the complete document:

Replace all references to IEC 62305 by references to EN 62305.

Replace all references to IEC 62561 by references to EN 50164.

2 Normative references

Replace this subclause by:

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 50164-1	Lightning Protection Components (LPC) – Part 1: Requirements for connection components
EN 50164-2	Lightning Protection Components (LPC) – Part 2: Requirements for conductors and earth electrodes
EN 50164-3	Lightning Protection Components (LPC) – Part 3: Requirements for isolating spark gaps
EN 50164-4	Lightning Protection Components (LPC) – Part 4: Requirements for conductor fasteners
EN 50164-5	Lightning Protection Components (LPC) – Part 5: Requirements for earth electrode inspection housings and earth electrode seals
EN 50164-6	Lightning Protection Components (LPC) – Part 6: Requirements for lightning strike counters
EN 50164-7	Lightning Protection Components (LPC) – Part 7: Requirements for earthing enhancing compounds

NOTE The above mentioned standards EN 50164 series will ultimately be replaced by EN 62561 series. EN 50164 series will still be valid for 72 months from the issuing date of each part of the EN 50164 series.

EN 60079-10-1:2009	Explosive atmospheres – Part 10-1: Classification of areas – Explosive gas atmospheres (IEC 60079-10-1:2008)
EN 60079-10-2:2009	Explosive atmospheres – Part 10-2: Classification of areas – Combustible dust atmospheres (IEC 60079-10-2:2009)
EN 60079-14:2008	Explosive atmospheres – Part 14: Electrical installations design, selection and erection (IEC 60079-14:2007)
EN 61557-4	Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 4: Resistance of earth connection and equipotential bonding (IEC 61557-4)
EN 61643-11	Low-voltage surge protective devices – Part 1: Surge protective devices connected to low-voltage power distribution systems – Requirements and tests (IEC 61643-1)
EN 61643-21	Low voltage surge protective devices – Part 21: Surge protective devices connected to telecommunications and signalling networks – Performance requirements and testing methods (IEC 61643-21)
EN 62305-1:2011	Protection against lightning – Part 1: General principles (IEC 62305-1:2010, modified)
EN 62305-2:2011	Protection against lightning – Part 2: Risk management (IEC 62305-2:2010, modified)
EN 62305-4:2011	Protection against lightning – Part 4: Electrical and electronic systems within structures (IEC 62305-4:2010, modified)

EN 62561 series 1)	Lightning Protection System Components (LPSC) (IEC 62561 series)
EN 62561-1 ²⁾	Lightning Protection System Components (LPSC) – Part 1: Requirements for connection components (IEC 62561)
EN 62561-3 ²⁾	Lightning Protection System Components (LPSC) – Part 3: Requirements for isolating spark gaps (IEC 62561-3)
ISO 3864-1	Graphical symbols – Safety colours and safety signs – Part 1: Design principles for safety signs in workplaces and public areas

3 Terms and definitions

Definition 3.16

Add at the end of the paragraph: "... as defined in the EN 50164 series."

Definition 3.17

Add at the end of the paragraph: "... as defined in the EN 50164 series."

4 Lightning protection system (LPS)

4.3 Continuity of steelwork in reinforced concrete structures

Replace NOTE 2 by:

NOTE 2 When the continuity of steelwork in reinforced concrete is intended to be established by clamping, specifically designed clamps complying with and tested according to EN 50164-1, should be used.

5 External lightning protection system

5.5.1 General

After the first paragraph, **add** the following paragraph:

All components shall comply with the EN 50164 series.

5.5.3 Connections

In the 2nd paragraph, replace "the future IEC 62561-1" with "EN 50164-1".

5.6.2 Dimensions

Replace the first paragraph by:

Materials, configurations and minimum cross-sectional areas of air-termination conductors, air-termination rods, down-conductors and earth lead-in rods are given in Table 6 and shall comply with the requirements and tests according to the EN 50164 series.

Add at the beginning of the second paragraph "Materials, ..." and **replace** at the end of the paragraph "IEC 62561 series" with "EN 50164 series".

In Table 7, **delete** the NOTE "f".

¹⁾ In preparation.

²⁾ At draft stage.

Annex E (informative) Guidelines for the design, construction, maintenance and inspection of lightning protection systems

E.4.2.3.2 Mechanical design

In the first sentence of the NOTE, replace "may" with "should" and "IEC 62561" with "EN 50164".

In the last paragraph, replace "could" with "should" and "IEC 62561" with "EN 50164".

E.4.3.3 Welding or clamping to the steel-reinforcing rods

In the NOTE, **replace** "IEC 62561 series of standards are suitable" with "EN 50164 series of standards should be used".

E.4.3.7 Down-conductors

Replace the 12th paragraph (i.e. after Figure E.9) by:

"If steel structures are used as down-conductors, every steel column should be connected to the steel reinforcing rods of the concrete foundation according to Figure E.7 by purposely designed bonding points complying with EN 50164 series."

E.5.2.4.1 General information

Replace the first paragraph by:

"The maximum permissible temperature for a conductor will not be exceeded if its cross-section complies with Table 6 and the EN 50164 series."

E.5.2.4.2 Non-isolated air-termination

After the 2nd paragraph, **add** the following NOTE:

NOTE For more details see EN 50164 series.

E.5.5 Components

Replace the 1st paragraph by:

"Components of LPS should withstand the electromagnetic effects of lightning current and predictable accidental stresses without being damaged. This can be achieved by choosing components that have successfully been tested in accordance with the EN 50164 series.

All components shall comply with the EN 50164 series."

E.5.6.1 Mechanical design

At the end of the 6th paragraph, **add** the following:

"...according to the EN 50164 series."

E.5.6.2.1 Materials

At the end of the 1st line, **add** the following:

"and the EN 50164 series"

E.5.6.2.2.1 Metals in soil and air

Replace the NOTE by:

NOTE Isolating spark gaps having a protection level U_{ρ} of 2,5 kV and a minimum I_{imp} of 50 kA (10/350 µs) complying with EN 50164-3 are suitable.

- 2 -

CONTE	NTS
-------	-----

FO	REWC	RD		7
INT	RODU	JCTION		10
1	Scope			11
2	Normative references1			11
3	Terms and definitions			
4			tection system (LPS)	
-	4.1		of LPS	
	4.1 4.2		of the LPS	
	4.2 4.3	•	uity of steelwork in reinforced concrete structures	
5			tning protection system	
5	5.1	General		
	5. I		Application of an external LPS	
		5.1.1	Choice of external LPS	
		5.1.2 5.1.3		
	5.2		Use of natural components nination systems	
	5.2	5.2.1	General	
		5.2.1	Positioning	
		5.2.2	Air-terminations against flashes to the side of tall structures	
		5.2.3	Construction	
		5.2.4	Natural components	
	5.3		conductor systems	
	0.0	5.3.1	General	21
		5.3.2	Positioning for an isolated LPS	22
		5.3.3	Positioning for a non-isolated LPS	
		5.3.4	Construction	
		5.3.5	Natural components	
		5.3.6	Test joints	
	5.4		ermination system	
		5.4.1	General	
		5.4.2	Earthing arrangement in general conditions	
		5.4.3	Installation of earth electrodes	
		5.4.4	Natural earth electrodes	
	5.5	Compo	nents	27
		5.5.1	General	27
		5.5.2	Fixing	28
		5.5.3	Connections	28
	5.6	Materia	als and dimensions	29
		5.6.1	Materials	29
		5.6.2	Dimensions	29
6	Interr	nal lighti	ning protection system	31
	6.1 General			31
	6.2	Lightni	ng equipotential bonding	32
		6.2.1	General	32
		6.2.2	Lightning equipotential bonding for metal installations	32
		6.2.3	Lightning equipotential bonding for external conductive parts	33
		6.2.4	Lightning equipotential bonding for internal systems	34

		6.2.5	Lightning equipotential bonding for lines connected to the structure to	
			be protected	
	6.3		cal insulation of the external LPS	
	Ż	6.3.1 6.3.2	General Simplified approach	
	\sim	6.3.3	Detailed approach	
7	Main		and inspection of an LPS	
	7.1		al	
	7.2		ation of inspections	
	7.3	Order	of inspections	37
	7.4	Mainte	nance	37
8	Prote	ection m	easures against injury to living beings due to touch and step voltages	37
	8.1	Protec	tion measures against touch voltages	37
	8.2		tion measures against step voltages	
			ive) Positioning the air-termination system	39
			ive) Minimum cross-section of the entering cable screen in order to sparking	45
Anr	nex C	(informa	ative) Evaluation of the separation distance s	46
			ive) Additional information for LPS in the case of structures with a	52
ins	pectio	n of ligh	ative) Guidelines for the design, construction, maintenance and thing protection systems	
Bib	liogra	phy		156
Fig	ure 1	– Protec	ction angle corresponding to the class of LPS	19
-			ction angle corresponding to the class of LPS n a down-conductor	
Fig	ure 2	– Loop i		23
Fig Fig	ure 2 ure 3	– Loop i – Minim	n a down-conductor	23 25
Fig Fig Fig	ure 2 ure 3 ure A.	– Loop i – Minim 1 – Volu	n a down-conductor um length I ₁ of each earth electrode according to the class of LPS	23 25 39
Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A.	– Loop i – Minim 1 – Volu 2 – Volu	n a down-conductor um length <i>I</i> ₁ of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod	23 25 39 40
Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. ure A.	– Loop i – Minim 1 – Volu 2 – Volu 3 – Volu 4 – Volu	n a down-conductor um length <i>I</i> ₁ of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by a solated wires combined in a mesh according to the	23 25 39 40 40
Fig Fig Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. ure A. tectio ure A.	– Loop i – Minim 1 – Volu 2 – Volu 3 – Volu 4 – Volu n angle 5 – Volu	n a down-conductor um length <i>I</i> ₁ of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination system ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to	23 25 39 40 40 41
Fig Fig Fig Fig Fig pro Fig the	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. mesh ure A.	– Loop i – Minim 1 – Volu 2 – Volu 3 – Volu 4 – Volu n angle 5 – Volu methoo 6 – Des	n a down-conductor um length <i>I</i> ₁ of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to and the protection angle method ign of an air-termination system according to the rolling sphere	23 25 39 40 40 41 42
Fig Fig Fig Fig Fig Fig Fig the Fig me	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. mesh ure A. thod	– Loop i – Minim 1 – Volu 3 – Volu 4 – Volu n angle 5 – Volu methoo 6 – Des	n a down-conductor um length l_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to the and the protection angle method ign of an air-termination system according to the rolling sphere	23 25 39 40 40 41 41 42
Fig Fig Fig Fig Fig pro Fig the Fig me	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. mesh ure A. thod	 Loop i Minim Volu Volu Volu Volu Volu Volu Total Volu Total Note Total Note N	n a down-conductor um length I_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to the and the protection angle method ign of an air-termination system according to the rolling sphere uses of coefficient k_c in the case of a wire air-termination system	23 25 39 40 40 41 42 43 46
Fig Fig Fig Fig Fig pro Fig the Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. mesh ure A. thod ure C.	 Loop i Minim Volu Volu	n a down-conductor um length l_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to and the protection angle method ign of an air-termination system according to the rolling sphere uses of coefficient k_c in the case of a wire air-termination system uses of coefficient k_c in the case of multiple down-conductors system	23 25 39 40 40 41 42 42 43 46 47
Fig Fig Fig Fig Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. thod ure C. ure C. ure C.	- Loop i - Minim 1 - Volu 2 - Volu 3 - Volu 4 - Volu n angle 5 - Volu 5 - Volu 0 methoo 6 - Des 	n a down-conductor um length l_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to and the protection angle method ign of an air-termination system according to the rolling sphere ues of coefficient k_c in the case of a wire air-termination system ues of coefficient k_c in the case of a sloped roof with air-termination on	23 25 39 40 40 41 42 42 43 46 47
Fig Fig Fig Fig Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. thod ure C. ure C. ridge ure C.	 Loop i Minim Volu Volu	n a down-conductor um length l_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to and the protection angle method ign of an air-termination system according to the rolling sphere uses of coefficient k_c in the case of a wire air-termination system uses of coefficient k_c in the case of multiple down-conductors system	23 25 39 40 40 41 42 42 43 46 47
Fig Fig Fig Fig Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. thod ure C. ure C. ridge ure C. vn-cor ure C.	 Loop i Minim Volu Volu	n a down-conductor um length I_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination system ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to the method and rolling sphere method ign of an air-termination system according to the rolling sphere ues of coefficient k_c in the case of a wire air-termination system ues of coefficient k_c in the case of a sloped roof with air-termination on mples of calculation of the separation distance in the case of multiple	23 25 39 40 41 41 42 43 46 47 49 50
Fig Fig Fig Fig Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. thod ure C. ure C. ridge ure C. ridge ure C. n a mu	 Loop i Minim Volu Volu	n a down-conductor um length l_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination rod ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to the method and rolling sphere method ign of an air-termination system according to the rolling sphere ues of coefficient k_c in the case of a wire air-termination system ues of coefficient k_c in the case of a sloped roof with air-termination on mples of calculation of the separation distance in the case of multiple with an interconnecting ring of the down-conductors at each level ues of coefficient k_c in the case of a meshed air-termination system,	23 25 39 40 41 41 42 43 46 47 49 50 51
Fig Fig Fig Fig Fig Fig Fig Fig Fig Fig	ure 2 ure 3 ure A. ure A. ure A. tectio ure A. tectio ure A. thod ure C. ure C. ridge ure C. vn-cor ure C. n a mu ure E.	 Loop i Minim Volu Volu	n a down-conductor. um length l_1 of each earth electrode according to the class of LPS ume protected by a vertical air-termination rod ume protected by a vertical air-termination system ume protected by a wire air-termination system ume protected by isolated wires combined in a mesh according to the method and rolling sphere method ume protected by non-isolated wires combined in a mesh according to the method and rolling sphere method ign of an air-termination system according to the rolling sphere ues of coefficient k_c in the case of a wire air-termination system ues of coefficient k_c in the case of a sloped roof with air-termination on mples of calculation of the separation distance in the case of multiple with an interconnecting ring of the down-conductors at each level ues of coefficient k_c in the case of a meshed air-termination system, proven-conductors system	23 25 39 40 41 42 42 42 43 46 47 49 50 51 61

Figure E.4 – Equipotential bonding in a structure with a steel reinforcement	70
Figure E.5 – Typical methods of joining reinforcing rods in concrete (where permitted)	71
Figure E.6 – Example of clamps used as joints between reinforcing rods and conductors	72
Figure E.7 – Examples for connection points to the reinforcement in a reinforced concrete wall.	73
Figure E.8 – Use of metallic facade as natural down-conductor system and connection of facade supports	77
Figure E.9 – Connection of the continuous strip windows to a metal facade covering	78
Figure E.10 – Internal down-conductors in industrial structures	81
Figure E.11 – Installation of bonding conductors in reinforced concrete structures and flexible bonds between two reinforced concrete parts	83
Figure E.12 – Protection angle method air-termination design for different heights according to Table 2	87
Figure E.13 – Isolated external LPS using two isolated air-termination masts designed according to the protection angle air-termination design method	88
Figure E.14 – Isolated external LPS using two isolated air-termination masts, interconnected by horizontal catenary wire	89
Figure E.15 – Example of design of an air-termination of a non-isolated LPS by air- termination rods	90
Figure E.16 – Example of design of an air-termination of a non isolated LPS by a horizontal wire according to the protection angle air-termination design method	91
Figure E.17 – Protected volume of an air- termination rod on a sloped surface using the protection angle design method	92
Figure E.18 – Design of an LPS air-termination conductor network on a structure with complicated shape	93
Figure E.19 – Design of an LPS air-termination according to the protection angle method, mesh method and general arrangement of air-termination elements	94
Figure E.20 – Space protected by two parallel air-termination horizontal wires or two air-termination rods ($r > h_t$)	95
Figure E.21 – Three examples of design of non-isolated LPS air-termination according to the mesh method air-termination design	98
Figure E.22 – Four examples of details of an LPS on a structure with sloped tiled roofs 10	00
Figure E.23 – Air-termination and visually concealed conductors for buildings less than 20 m high, with sloping roofs	01
Figure E.24 – Construction of an LPS using natural components on the roof of the structure	03
Figure E.25 – Positioning of the external LPS on a structure made of isolating material e.g. wood or bricks with a height up to 60 m with flat roof and with roof fixtures	04
Figure E.26 – Construction of air-termination network on a roof with conductive covering where puncturing of the covering is not acceptable	
Figure E.27 – Construction of external LPS on a structure of steel-reinforced concrete using the reinforcement of the outer walls as natural components1	06
Figure E.28 – Example of an air-termination stud used on car park roofs	07
Figure E.29 – Air-termination rod used for protection of a metallic roof fixture with electric power installations which are not bonded to the air-termination system	08
Figure E.30 – Method of achieving electrical continuity on metallic parapet capping 10	09
Figure E.31 – Metallic roof fixture protected against direct lightning interception, connected to air-termination system	12

Figure E.32 – Examplesof lightning protection of a house with a TV antenna	115
Figure E.33 – Installation of lightning protection of metallic equipment on a roof against a direct lightning flash	116
Figure E.34 – Connection of natural air-termination rod to air-termination conductor	118
Figure E.35 – Construction of the bridging between the segments of the metallic facade plates	119
Figure E.36 – Installation of external LPS on a structure of insulating material with different roof levels	122
Figure E.37 – Five examples of geometry of LPS conductors	123
Figure E.38 – Construction of an LPS using only two down-conductors and foundation earth electrodes	124
Figure E.39 – Four examples of connection of earth-termination to the LPS of structures using natural down-conductors (girders) and detail of a test joint	128
Figure E.40 – Construction of foundation earth ring for structures of different foundation design	132
Figure E.41 – Two examples of vertical electrodes in type A earthing arrangement	134
Figure E.42 – Meshed earth-termination system of a plant	137
Figure E.43 – Example of an equipotential bonding arrangement	144
Figure E.44 – Example of bonding arrangement in a structure with multiple point entries of external conductive parts using a ring electrode for interconnection of bonding bars	145
Figure E.45 – Example of bonding in the case of multiple point entries of external conductive parts and an electric power or communication line using an internal ring conductor for interconnection of the bonding bars	146
Figure E.46 – Example of bonding arrangement in a structure with multiple point entries of external conductive parts entering the structure above ground level	147
Figure E.47 – Directions for calculations of the separation distance, <i>s</i> , for a worst case lightning interception point at a distance <i>l</i> from the reference point according to 6.3	149
Table 1 – Relation between lightning protection levels (LPL) and class of LPS (see IEC 62305-1)	. 16
Table 2 – Maximum values of rolling sphere radius, mesh size and protection angle corresponding to the class of LPS	. 19
Table 3 – Minimum thickness of metal sheets or metal pipes in air-termination systems	. 21
Table 4 – Typical preferred values of the distance between down-conductors according to the class of LPS	. 22
Table 5 – LPS materials and conditions of use	. 28
Table 6 – Material, configuration and minimum cross-sectional area of air-termination conductors, air-termination rods, earth lead-in rods and down-conductors	
Table 7 – Material, configuration and minimum dimensions of earth electrodes	
Table 8 – Minimum dimensions of conductors connecting different bonding bars or connecting bonding bars to the earth-termination system	. 33
Table 9 – Minimum dimensions of conductors connecting internal metal installations to the bonding bar	
Table 10 – Isolation of external LPS – Values of coefficient k_i	. 35
Table 11 – Isolation of external LPS – Values of coefficient $k_{\rm m}$. 35
Table 12 – Isolation of external LPS – Approximated values of coefficient $k_{\rm c}$. 36
Table B.1 – Cable length to be considered according to the condition of the screen	
Table E.1 – Suggested fixing centres	. 99

- 10 -

This part of IEC 62305 deals with the protection, in and around a structure, against physical damage and injury to living beings due to touch and step voltages.

The main and most effective measure for protection of structures against physical damage is considered to be the lightning protection system (LPS). It usually consists of both external and internal lightning protection systems.

An external LPS is intended to

- a) intercept a lightning flash to the structure (with an air-termination system),
- b) conduct the lightning current safely towards earth (using a down-conductor system),
- c) disperse the lightning current into the earth (using an earth-termination system).

An internal LPS prevents dangerous sparking within the structure using either equipotential bonding or a separation distance (and hence electrical insulation) between the external LPS (as defined in 3.2) components and other electrically conducting elements internal to the structure.

Main protection measures against injury to living beings due to touch and step voltages are intended to:

- 1) reduce the dangerous current flowing through bodies by insulating exposed conductive parts, and/or by increasing the surface soil resistivity,
- 2) reduce the occurrence of dangerous touch and step voltages by physical restrictions and/or warning notices.

The type and location of an LPS should be carefully considered in the initial design of a new structure, thereby enabling maximum advantage to be taken of the electrically conductive parts of the structure. By doing so, design and construction of an integrated installation is made easier, the overall aesthetic aspects can be improved, and the effectiveness of the LPS can be increased at minimum cost and effort.

Access to the ground and the proper use of foundation steelwork for the purpose of forming an effective earth-termination may well be impossible once construction work on a site has commenced. Therefore, soil resistivity and the nature of the earth should be considered at the earliest possible stage of a project. This information is fundamental to the design of an earthtermination system and may influence the foundation design work for the structure.

Regular consultation between LPS designers and installers, architects and builders is essential in order to achieve the best result at minimum cost.

If lightning protection is to be added to an existing structure, every effort should be made to ensure that it conforms to the principles of this standard. The design of the type and location of an LPS should take into account the features of the existing structure.

PROTECTION AGAINST LIGHTNING –

Part 3: Physical damage to structures and life hazard

1 Scope

This part of IEC 62305 provides the requirements for protection of a structure against physical damage by means of a lightning protection system (LPS), and for protection against injury to living beings due to touch and step voltages in the vicinity of an LPS (see IEC 62305-1).

This standard is applicable to:

- a) design, installation, inspection and maintenance of an LPS for structures without limitation of their height,
- b) establishment of measures for protection against injury to living beings due to touch and step voltages.

NOTE 1 Specific requirements for an LPS in structures dangerous to their surroundings due to the risk of explosion are under consideration. Additional information is provided in Annex D for use in the interim.

NOTE 2 This part of IEC 62305 is not intended to provide protection against failures of electrical and electronic systems due to overvoltages. Specific requirements for such cases are provided in IEC 62305-4.

NOTE 3 Specific requirements for protection against lightning of wind turbines are reported in IEC 61400-24^[2].

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60079-10-1:2008, *Explosive atmospheres – Part 10-1: Classification of areas – Explosive gas atmospheres*

IEC 60079-10-2:2009, *Explosive atmospheres* – *Part 10-2: Classification of areas* – *Combustible dust atmospheres*

IEC 60079-14:2007, Explosive atmospheres – Part 14: Electrical installations design, selection and erection

IEC 61557-4, Electrical safety in low-voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 4: Resistance of earth connection and equipotential bonding

IEC 61643-1, Low-voltage surge protective devices – Part 1: Surge protective devices connected to low-voltage power distribution systems – Requirements and tests

IEC 61643-21, Low-voltage surge protective devices – Part 21: Surge protective devices connected to telecommunications and signalling networks – Performance requirements and testing methods

IEC 62305-1, Protection against lightning – Part 1: General principles

IEC 62305-2, Protection against lightning – Part 2: Risk management

IEC 62305-4, Protection against lightning – Part 4: Electrical and electronic systems within structures

IEC 62561 (all parts)², *Lightning protection system components (LPSC)*

IEC 62561-1³, Lightning protection system components (LPSC) – Part 1: Requirements for connection components

IEC 62561-3³, Lightning protection system components (LPSC) – Part 3: Requirements for isolating spark gaps

ISO 3864-1, Graphical symbols – Safety colours and safety signs – Part 1: Design principles for safety signs in workplaces and public areas

3 Terms and definitions

For the purposes of this document, the following terms and definitions, some of which have already been cited in Part 1 but are repeated here for ease of reference, as well as those given in other parts of IEC 62305, apply.

3.1

lightning protection system

LPS

complete system used to reduce physical damage due to lightning flashes to a structure

NOTE It consists of both external and internal lightning protection systems.

3.2

external lightning protection system

part of the LPS consisting of an air-termination system, a down-conductor system and an earth-termination system

3.3

external LPS isolated from the structure to be protected

LPS with an air-termination system and down-conductor system positioned in such a way that the path of the lightning current has no contact with the structure to be protected

NOTE In an isolated LPS, dangerous sparks between the LPS and the structure are avoided.

3.4

external LPS not isolated from the structure to be protected

LPS with an air-termination system and down-conductor system positioned in such a way that the path of the lightning current can be in contact with the structure to be protected

3.5

internal lightning protection system

part of the LPS consisting of lightning equipotential bonding and/or electrical insulation of external LPS

3.6

air-termination system

part of an external LPS using metallic elements such as rods, mesh conductors or catenary wires intended to intercept lightning flashes

² In preparation.