Edition 4.0 2011-06 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index Equipements pour systèmes électroacoustiques - Partie 16: Evaluation objective de l'intelligibilité de la parole au moyen de l'indice de transmission de la parole #### THIS PUBLICATION IS COPYRIGHT PROTECTED ### Copyright © 2011 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur. Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. Catalogue of IEC publications: www.iec.ch/searchpub The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications. ■ IEC Just Published: <u>www.iec.ch/online_news/justpub</u> Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email. Electropedia: www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online. Customer Service Centre: www.iec.ch/webstore/custserv If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us: Email: <u>csc@iec.ch</u> Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00 #### A propos de la CEI La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. #### A propos des publications CEI Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. ■ Catalogue des publications de la CEI: <u>www.iec.ch/searchpub/cur_fut-f.htm</u> Le Catalogue en-ligne de la CEI vous permet d'effectuer des recherches en utilisant différents critères (numéro de référence, texte, comité d'études,...). Il donne aussi des informations sur les projets et les publications retirées ou remplacées. Just Published CEI: www.iec.ch/online news/justpub Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles publications parues. Disponible en-ligne et aussi par email. ■ Electropedia: <u>www.electropedia.org</u> Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International en ligne. ■ Service Clients: <u>www.iec.ch/webstore/custserv/custserv_entry-f.htm</u> Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du Service clients ou contactez-nous: Email: csc@iec.ch Tél.: +41 22 919 02 11 Fax: +41 22 919 03 00 Edition 4.0 2011-06 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index Equipements pour systèmes électroacoustiques - Partie 16: Evaluation objective de l'intelligibilité de la parole au moyen de l'indice de transmission de la parole INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE PRICE CODE CODE PRIX ICS 33.160.01 ISBN 978-2-88912-672-9 # CONTENTS | FC | REW | ORD | | 5 | | | | |----|--|--------------------------------------|---|----|--|--|--| | IN | TROD | UCTION | l | 7 | | | | | 1 | Scor | oe | | 9 | | | | | 2 | Norr | Normative references | | | | | | | 3 | Tern | Terms and definitions | | | | | | | 4 | Desc | cription o | of the STI method | 15 | | | | | | 4.1 | General | | | | | | | | | | Rationale for the STI method | | | | | | | | 4.1.2 | Applicability of the STI method | 15 | | | | | | 4.2 | Backgr | round of the STI method | 16 | | | | | | | 4.2.1 | General | 16 | | | | | | | 4.2.2 | Theoretical overview | 17 | | | | | | | 4.2.3 | Measurement of STI | 18 | | | | | | 4.3 | .3 Applicability of STI test methods | | | | | | | | 4.4 | | direct and indirect methods | | | | | | | 4.5 | | ions of the STI method | | | | | | | | 4.5.1 | General | | | | | | | | 4.5.2 | Frequency shifts | | | | | | | | 4.5.3 | Centre clipping | | | | | | | | 4.5.4 | Drop outs | | | | | | | | 4.5.5 | Vocoders | | | | | | | | 4.5.6
4.5.7 | Overestimation of STI under low background noise conditions | | | | | | | | 4.5.8 | Frequency response | | | | | | | | 4.5.9 | Echoes | | | | | | | | | Fast amplitude compression and expansion | | | | | | | | | Non-linear distortion | | | | | | | | | Impulsive and fluctuating noise | | | | | | | | | Hearing impaired listeners | | | | | | | 4.6 | | ision | | | | | | 5 | Direct method of measuring STI | | | | | | | | | 5.1 | | | | | | | | | 5.2 | | | | | | | | | 5.3 | | | 26 | | | | | | 5.4 | 5.4 Limitations | | | | | | | 6 | Indirect method of measuring STI using the impulse response | | | | | | | | | 6.1 | 1 Overview | | | | | | | | 6.2 | 2 Application | | 27 | | | | | | 6.3 | Limitat | ions (non-linear distortion) | 28 | | | | | 7 | Measurement procedures, post-processing of data and applications | | | | | | | | | 7.1 | 7.1 General | | | | | | | | 7.2 | 7.2 Acoustical input | | | | | | | | 7.3 | 7.3 Acoustical output | | | | | | | | 7.4 | 7.4 Electrical input | | | | | | | | 7.5 | | cal output | | | | | | | 7.6 | Examp | les of input/output combinations | 30 | | | | | 7.6.1 | Acoustical input – Acoustical output | 30 | |---|---|-----| | 7.6.2 | Electrical input – Electrical output (e.g. assessment of wired and wireless) communication systems) | 30 | | 7.6.3 | | | | 7.6.4 | Electrical input – Acoustical output (e.g. assessment of PA systems) | 31 | | 7.7 Post- | processing of measured MTF data | 31 | | 7.8 Issue | es concerning noise | 31 | | | General | | | | Measurement of background noise | | | | Fluctuating noise | | | | ysis and interpretation of the results | | | | ural STI measurements | | | | as a design prediction tool | | | | view | | | | stical predictionsiction from simulated impulse response | | | | ative) Speech transmission index (STI) and revised STI methods | | | • | | | | • | ative) STIPA method | | | | ative) STITEL method | | | | mative) RASTI method (obsolete) | 50 | | Annex E (information intelligibility me | mative) Qualification of the STI and relationships with other speech easures | 52 | | Annex F (inform | native) Nominal qualification bands for STI | 54 | | Annex G (inform | mative) Examples of STI qualification bands and typical applications | 55 | | Annex H (inform | mative) Non-native listeners | 56 | | | ative) Effect of age-related hearing loss and hearing impairment on bility | 57 | | Annex J (norma | ative) Calibration of STI test signal level | 58 | | • | mative) Example test report sheet for STI measurements | | | | ative) Prediction of STI using statistical methods | | | Annex M (infor | mative) Adjustments to measured STI and STIPA results for simulation oise and different speech levels | | | | mative) Other methods of determining speech intelligibility | | | , | mative) Other methods of determining speech intelligibility | | | вынодгарпу | | / C | | Figure 1 – Con | cept of the reduction in modulation due to a transmission channel | 16 | | _ | ulation transfer function – Input/output comparison | | | | nvelope function (panel A) of a 10 s speech signal for the 250 Hz | | | octave band ar | nd corresponding envelope spectrum (panel B) | | | | neoretical expression of the MTF | | | | easurement system and frequencies for the STI method | | | _ | uditory masking of octave band $(k-1)$ on octave band (k) | | | Figure D.1 – III | ustration of a practical RASTI test signal | 51 | | Figure E.1 – Re | elationships between some speech intelligibility measures | 52 | | | elationship between STI, speech intelligibility scores and listening s [34], [35] | 53 | | | El qualification hands | 5/ | | Table 1 – Comparison of STI test methods for different types of distortion | 19 | | | | | |---|-----|--|--|--|--| | Table 2 – Applicability of test | 20 | | | | | | Table 3 – Choice of method | 21 | | | | | | Table A.1 – Auditory masking as a function of the octave band level | 41 | | | | | | Table A.2 – Absolute speech reception threshold level in octave bands | | | | | | | Table A.3 – MTI octave band weighting factors | 42 | | | | | | Table A.4 – Octave band levels (dB) relative to the A-weighted speech level | 43 | | | | | | Table B.1 – Modulation frequencies for the STIPA method | | | | | | | Table C.1 – Modulation frequencies for the STITEL method | 49 | | | | | | Table D.1 – Modulation frequencies for the RASTI method | | | | | | | Table E.1 – Categories for listening difficulty | 53 | | | | | | Table G.1 – Examples between STI qualification bands and typical applications | 55 | | | | | | Table H.1 – Adjusted intelligibility qualification tables for non-native listeners | 56 | | | | | | Table I.1 – Adjusted intelligibility qualification tables for normal listeners and people | | | | | | | over 60 years old with hearing loss | | | | | | | Table W. 1 – Example calculation | .0 | | | | | | | | | | | | | | Table M.1 – Example calculation | \diamondsuit_{x} | Θ_{j} | '/_ | | | | | | | 0 | | | | | | | O' | ### INTERNATIONAL ELECTROTECHNICAL COMMISSION #### SOUND SYSTEM EQUIPMENT - # Part 16: Objective rating of speech intelligibility by speech transmission index #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 60268-16 has been prepared by IEC technical committee 100: Multimedia equipment and systems. This fourth edition cancels and replaces the third edition, published in 2003, and constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - development of more comprehensive, complete and unambiguous standardization of the STI methodology; - the term STI_r is discontinued. A new function for the prediction of auditory masking effects is introduced: - the concept of 'speech level' and the setting of the level of the test signal have been introduced; additional information has been included on prediction and measurement procedures. NOTE See Introduction for a historical summary referring to the various changes from the first to the fourth edition (current edition). This bilingual version corresponds to the monolingual English version, published in 2011-06. The text of this standard is based on the following documents: | FDIS | Report on voting | |---------------|------------------| | 100/1812/FDIS | 100/1849/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. The French version of this standard has not been voted upon. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all the parts in the IEC 60268 series, published under the general title Sound system equipment can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be ne de la companya del companya de la companya del companya de la c - reconfirmed. - withdrawn, - replaced by a revised edition, or - amended. ### INTRODUCTION The Speech Transmission Index (STI) is an objective measure to predict the intelligibility of speech transmitted from talker to listener by a transmission channel. The STI method has been the subject of ongoing development and refinement since its introduction in the 1970s. Major improvements of the STI have been consolidated by incorporating them in successive revisions of IEC 60268-16. The history of revisions is as follows. - Revision 1: 1988. In the first version of the STI standard, a gender-independent test signal spectrum was used. - Revision 2: 1998. Gender specific test signals were introduced, for male and female talkers, each gender relating to a specific set of weighting factors. In addition, weightings were introduced for redundancy factors. The term STI_r was introduced to signify the use of these redundancy factors. - Revision 3: 2003. Important differences between Revision 2 and Revision 3 are the introduction of - level dependent masking functions, - the STI derivative STIPA. STIPA was specially developed as a fast measurement method that could deal with electro-acoustic and acoustic effects while determining the speech transmission quality of PA systems. Revision 4: 2010. The aim of Revision 4 (this revision) is to provide a more comprehensive, complete and unambiguous standardization of the STI methodology. The term STI_r is now discontinued. A new function for the prediction of auditory masking effects is introduced. Speech is considered to be the major method of communication between humans. In many situations the speech signal is degraded by the signal path or the transmission channel between talker and listener, resulting in a reduction of the intelligibility of the speech at the listener's location. To quantify the deterioration of the speech intelligibility induced by the transmission channel, a fast and objective measuring method was developed; the Speech Transmission Index (STI). The STI method applies a specific test signal to the transmission channel and by analysing the received test signal; the speech transmission quality of the channel is derived and expressed in a value between 0 and 1, as the Speech Transmission Index (STI). Using the obtained STI-value, the potential speech intelligibility can be determined. Although there are limitations to the STI method, the use of STI has proved useful in many situations and has gained international acceptance. #### Items that have changed in this revision Specific changes that have been incorporated in this revision are: - refinement of the STI model with respect to the level dependent masking function; - Room Acoustic Speech Transmission Index (RASTI) has become obsolete and should not be used: - calculations to add or remove the effects of background noise and to change the speech level and a worked example; - notes regarding limitations of the STI method; - methods to predict the STI performance of transmission channels based on the predicted (as distinct from measured) performance of parts or all of the transmission channel; · 90/17/5 - introduction of STI corrections for non-native language listeners; - introduction of STI corrections for listeners with some specific forms of hearing loss; - relationships between STI and 'Listening Difficulty' scale. ## Potential applications of STI STI may be used to measure the potential intelligibility of a wide range of electronic systems and acoustic environments. Typical applications include: - measurement of Public Address and Sound Reinforcement Systems; - measurement and Certification of Voice Alarm and emergency sound systems; - measurement of communication channels / systems such as intercoms and wireless communication; - measurement of potential speech intelligibility and communication in rooms and auditoria; - evaluation of direct speech communication (situations without electronic amplification) in rooms or acoustic spaces including vehicles; - evaluation of the potential intelligibility of Assistive Hearing Systems; NOTE The STI method is not validated for the measurement and evaluation of speech privacy or speech masking systems. #### Potential users of STI The range of users of STI measurements is diverse. Among the users who may apply this method are: - certifiers of voice alarm and other types of emergency systems; - · certifiers of sound reinforcement and audio systems; - audio and telecommunication equipment manufacturers; - audio and communication engineers; - acoustical and electro-acoustical engineers; - sound system installers; - researchers into STI methods and developers of instruments to measure STI. To avoid misinterpretation of STI results, it is important that all users have an understanding of the basic principles, the application domain and its limitations. ### **SOUND SYSTEM EQUIPMENT -** # Part 16: Objective rating of speech intelligibility by speech transmission index ### 1 Scope This part of IEC 60268 specifies objective methods for rating the transmission quality of speech with respect to intelligibility. The objective of this standard is to provide a comprehensive manual for all types of users of the STI method in the fields of audio, communications and acoustics. This standard does not provide STI criteria for certification of transmission channels (e.g. criteria for a voice-alarm system). Three methods are presented, which are closely related and are referred to as STI, STIPA, and STITEL. The first two methods are intended for rating speech transmission performance with or without sound systems. The STITEL method has more restricted uses. NOTE None of the methods are suitable for the measurement and assessment of speech privacy and speech masking systems, as STI has not been validated for conditions that represent speech privacy applications [1] 1. The following information is included: - measurement techniques; - prediction techniques. ### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies: IEC 61260:1995, Electroacoustics – Octave-band and fractional-octave-band filters Amendment 1 (2001) ISO 18233:2006, Acoustics – Application of new measurement methods in building and room acoustics #### 3 Terms and definitions For the purpose of this document, the following terms and definitions apply. #### 3.1 # speech intelligibility rating of the proportion of speech that is understood ¹ Figures in square brackets refer to the Bibliography.