

Edition 1.0 2011-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Nuclear power plants – Instrumentation and control important to safety – Electrical equipment condition monitoring methods – Part 2: Indenter modulus

Centrales nucléaires de puissance – Instrumentation et contrôle-commande importants pour la sûreté – Méthodes de surveillance de l'état des matériels électriques –

Partie 2: Module indenter

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2011 IEC, Geneva, Switzerland Copyright © 2011 IEEE

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing being secured.

Requests for permission to reproduce should be addressed to either IEC at the address below or IEC's member National Committee in the country of the requester or from IEEE.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue New York, NY 10016-5597 United States of America Email: stds.ipr@ieee.org Web: www.ieee.org

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About the IEEE

IEEE is the world's largest professional association dedicated to advancing technological innovation and excellence for the benefit of humanity. IEEE and its members inspire a global community through its highly cited publications, conferences, technology standards, and professional and educational activities.

About IEC/IEEE publications

The technical content of IEC/IEEE publications is kept under constant review by the IEC and IEEE. Please make sure that you have the latest edition; corrigenda or amendments might have been published.

IEC catalogue of publications: www.iec.ch/searchpub

The IEC online catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

IEEE products and services : www.ieee.org/go/shop

IEEE publishes nearly a third of the world's technical literature in electrical engineering, computer science, and electronics. Browse the latest publications including standards, draft standards, standards collections, and much more.

IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also by monthly email.

Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: www.iec.ch/webstore/custserv
 If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
 Centre FAQ or contact us:
 Email: csc@iec.ch
 Tel.: +41 22 919 02 11
 Fax: +41 22 919 03 00

Edition 1.0 2011-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Nuclear power plants - Instrumentation and control important to safety -Electrical equipment condition monitoring methods -Part 2: Indenter modulus

Centrales nucléaires de puissance – Instrumentation et contrôle-commande importants pour la sûreté – Méthodes de surveillance de l'état des matériels électriques -NO OKO

Partie 2: Module indenter

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE **INTERNATIONALE**

ICS 27.120.20

ISBN 978-2-88912-667-5

CONTENTS

FO	OREWORD				
INT	RODU	JCTION	5		
1	Scope and object				
2	Term	s and definitions	7		
3	Abbreviations and acronyms				
4	General description				
5	Appli	cability, reproducibility, and complexity	8		
	5.1	General	8		
	5.2	Applicability			
	5.3	Reproducibility	8		
	5.4	Complexity	9		
6	Meas	urement procedure	9		
	6.1	Stabilisation of the polymeric materials	9		
	6.2	Sampling and measurement locations			
	6.3	Conditions for measurement			
	6.4	Instrumentation			
	6.5	Calibration and tolerances			
	6.6	Selection of measurement points			
	6.7	Selection of probe velocity and maximum force			
	6.8 6.9	Determination of the value of the indenter modulus1			
	6.10	Reporting			
Anr		(informative) Examples illustrating factors affecting the variation of the	2		
		modulus value	4		
		(informative) Example of a measurement report for indenter measurements in	_		
		y1			
Bib	liograp	ohy1	9		
		 A schematic representation of the geometry and dimensions of the probe tip ne indenter1 	0		
		– Calculation of indenter modulus1			
		1 – Example of local variation of indenter modulus due to variation in			
equ	ipmer	nt dimensions and construction1	4		
-		2 – Indenter values measured at different temperatures1			
Fig	-igure A.3 – Normalised indenter mean values16				
	igure A.4 – Example of change of indenter modulus value in laboratory conditions of hygroscopic sample after removal from long-term exposure in a heat chamber				
	igure A.5 – Adaptation of a decay curve to the measured indenter modulus values in igure A.4				
Fig	igure B.1 – Example of measured force vs displacement				

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NUCLEAR POWER PLANTS – INSTRUMENTATION AND CONTROL IMPORTANT TO SAFETY – ELECTRICAL EQUIPMENT CONDITION MONITORING METHODS –

Part 2: Indenter modulus

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary. IEEE documents are made available for use subject to important notices and legal disclaimers (see http://standards.ieee.org/IPR/disclaimers.html for more information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two organizations. This Dual Logo International Standard was jointly developed by the IEC and IEEE under the terms of that agreement.

- 2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE-SA) Standards Board.
- 3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual experts and members of technical committees and IEC National Committees, or volunteers of IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE Publication or any other IEC or IEEE Publications.
- Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of material covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

International Standard IEC/IEEE 62582-2 has been prepared by subcommittee 45A: Instrumentation and control of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation, in cooperation with the Nuclear Power Engineering Committee of the Power & Energy Society of the IEEE¹, under the IEC/IEEE Dual Logo Agreement between IEC and IEEE.

This publication is published as an IEC/IEEE Dual Logo standard.

The text of this standard is based on the following IEC documents:

FDIS	Report on voting
45A/841/FDIS	45A/850/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

International standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

A list of all parts of IEC/IEEE 62582 series, under the general title *Nuclear power plants* – *Instrumentation and control important to safety* – *Electrical equipment condition monitoring methods*, can be found on the IEC website.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

¹ A list of IEEE participants can be found at the following URL:http://standards.ieee.org/downloads/62582-2/62582-2-2011/62582-2-2011_wg-participants.pdf.

INTRODUCTION

a) Technical background, main issues and organisation of this standard

This part of this IEC/IEEE standard specifically focuses on indenter modulus methods for condition monitoring for the management of ageing of electrical equipment installed in nuclear power plants. The indenter method is commonly used to carry out measurements on cables (jackets, insulation) and o-rings.

This part of IEC/IEEE 62582 is the second part of the IEC/IEEE 62582. It contains detailed descriptions of condition monitoring based on indenter modulus measurements.

The IEC/IEEE 62582 series is issued with a joint logo which makes it applicable to the management of ageing of electrical equipment qualified to IEEE as well as IEC Standards.

Historically, IEEE Std 323-2003 introduced the concept and role that condition based qualification could be used in equipment qualification as an adjunct to qualified life. In equipment qualification, the condition of the equipment for which acceptable performance was demonstrated is the qualified condition. The qualified condition is the condition of equipment, prior to the start of a design basis event, for which the equipment was demonstrated to meet the design requirements for the specified service conditions.

Significant research has been performed on condition monitoring techniques and the use of these techniques in equipment qualification as noted in NUREG/CR-6704, Vol. 2 (BNL - NUREG-52610) and JNES-SS-0903, 2009.

It is intended that this IEC/IEEE standard be used by test laboratories, operators of nuclear power plants, systems evaluators, and licensors.

b) Situation of the current standard in the structure of the IEC SC 45A standard series

Part 2 of IEC/IEEE 62582 is the third level IEC SC 45A document tackling the specific issue of application and performance of indenter modulus measurements in management of ageing of electrical instrument and control equipment in nuclear power plants.

Part 2 of IEC/IEEE 62582 is to be read in association with part 1 of IEC/IEEE 62582, which provides background and guidelines for the application of methods for condition monitoring of electrical equipment important to safety of nuclear power plants.

For more details on the structure of the IEC SC 45A standard series, see item d) of this introduction.

c) Recommendations and limitations regarding the application of this standard

It is important to note that this Standard establishes no additional functional requirements for safety systems.

d) Description of the structure of the IEC SC 45A standard series and relationships with other IEC documents and other bodies documents (IAEA, ISO)

The top-level document of the IEC SC 45A standard series is IEC 61513. It provides general requirements for I&C systems and equipment that are used to perform functions important to safety in NPPs. IEC 61513 structures the IEC SC 45A standard series.

IEC 61513 refers directly to other IEC SC 45A standards for general topics related to categorisation of functions and classification of systems, qualification, separation of systems, defence against common cause failure, software aspects of computer-based systems,

hardware aspects of computer-based systems, and control room design. The standards referenced directly at this second level should be considered together with IEC 61513 as a consistent document set.

At a third level, IEC SC 45A standards not directly referenced by IEC 61513 are standards related to specific equipment, technical methods, or specific activities. Usually these documents, which make reference to second-level documents for general topics, can be used on their own.

A fourth level extending the IEC SC 45A standard series, corresponds to the Technical Reports which are not normative.

IEC 61513 has adopted a presentation format similar to the basic safety publication IEC 61508 with an overall safety life-cycle framework and a system life-cycle framework and provides an interpretation of the general requirements of IEC 61508-1, IEC 61508-2 and IEC 61508-4, for the nuclear application sector. Compliance with IEC 61513 will facilitate consistency with the requirements of IEC 61508 as they have been interpreted for the nuclear industry. In this framework IEC 60880 and IEC 62138 correspond to IEC 61508-3 for the nuclear application sector.

IEC 61513 refers to ISO as well as to IAEA 50-C-QA (now replaced by IAEA GS-R-3) for topics related to quality assurance (QA).

The IEC SC 45A standards series consistently implements and details the principles and basic safety aspects provided in the IAEA code on the safety of NPPs and in the IAEA safety series, in particular the Requirements NS-R-1, establishing safety requirements related to the design of Nuclear Power Plants, and the Safety Guide NS-G-1.3 dealing with instrumentation and control systems important to safety in Nuclear Power Plants. The terminology and definitions used by SC 45A standards are consistent with those used by the IAEA.

if Powei with those used by una

NUCLEAR POWER PLANTS – INSTRUMENTATION AND CONTROL IMPORTANT TO SAFETY – ELECTRICAL EQUIPMENT CONDITION MONITORING METHODS –

Part 2: Indenter modulus

1 Scope and object

This part of IEC/IEEE 62582 contains methods for condition monitoring of organic and polymeric materials in instrumentation and control systems using the indenter modulus technique in the detail necessary to produce accurate and reproducible measurements. It includes the requirements for the selection of samples, the measurement system and measurement conditions, and the reporting of the measurement results.

The different parts of IEC/IEEE 62582 are measurement standards, primarily for use in the management of ageing in initial qualification and after installation. Part 1 of IEC/IEEE 62582 includes requirements for the application of the other parts of IEC/IEEE 62582 and some elements which are common to all methods. Information on the role of condition monitoring in the qualification of equipment important to safety is found in IEEE Std 323.

This standard is intended for application to non-energised equipment.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply:

2.1

indenter modulus

ratio between the changes in applied force and corresponding displacement of a probe of a standardised shape, driven into a material. It is expressed in $N \cdot mm^{-1}$.

NOTE The term "modulus" typically refers to the modulus of elasticity of a material which is defined as the ratio of the applied stress and the corresponding strain and is expressed in $N \cdot m^{-2}$ (Pa). However, in the use of the indenter, it has become common practice to use the term indenter modulus to describe the ratio of the change in applied force to material deformation and express it in $N \cdot m^{-1}$.

êgo oz mego

3 Abbreviations and acronyms

- DBE Design Basis Event
- IM Indenter Modulus
- SiR silicone rubber
- CSPE chlorosulphonated polyethylene
- EPDM ethylene propylene diene monomer
- XLPE crosslinked polyethylene