7:500

Analysis techniques for dependability - Petri net techniques (IEC 62551:2012)



### EESTI STANDARDI EESSÕNA

### NATIONAL FOREWORD

| See Eesti standard EVS-EN 62551:2012 sisaldab<br>Euroopa standardi EN 62551:2012 ingliskeelset<br>teksti.                 | This Estonian standard EVS-EN 62551:2012 consists of the English text of the European standard EN 62551:2012.                      |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.                                                        | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation. |
| Euroopa standardimisorganisatsioonid on teinud<br>Euroopa standardi rahvuslikele liikmetele<br>kättesaadavaks 16.11.2012. | Date of Availability of the European standard is 16.11.2012.                                                                       |
| Standard on kättesaadav Eesti Standardikeskusest.                                                                         | The standard is available from the Estonian Centre for Standardisation.                                                            |
|                                                                                                                           |                                                                                                                                    |

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 21.020

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation: Aru 10, 10317 Tallinn, Estonia; www.evs.ee; phone 605 5050; e-mail info@evs.ee

# EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

# EN 62551

November 2012

ICS 21.020

English version

### Analysis techniques for dependability -Petri net techniques (IEC 62551:2012)

Techniques d'analyse de sûreté de fonctionnement -Techniques des réseaux de Petri (CEI 62551:2012) Analysemethoden für Zuverlässigkeit -Petrinetze (IEC 62551:2012)

This European Standard was approved by CENELEC on 2012-11-06. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

# CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2012 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

### Foreword

The text of document 56/1476/FDIS, future edition 1 of IEC 62551, prepared by IEC/TC 56 "Dependability" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62551:2012.

The following dates are fixed:

| • | latest date by which the document has<br>to be implemented at national level by<br>publication of an identical national<br>standard or by endorsement | (dop) | 2013-08-06 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| • | latest date by which the national standards conflicting with the document have to be withdrawn                                                        | (dow) | 2015-11-06 |

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

### **Endorsement notice**

The text of the International Standard IEC 62551:2012 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

| IEC 61508 Series | NOTE | Harmonised as EN 61508 Series (not modified). |
|------------------|------|-----------------------------------------------|
| IEC 61508-4:2010 | NOTE | Harmonised as EN 61508-4:2010 (not modified). |
| IEC 61508-1:2010 | NOTE | Harmonised as EN 61508-1:2010 (not modified). |
| IEC 61165:2006   | NOTE | Harmonised as EN 61165:2006 (not modified).   |
| IEC 60812:2006   | NOTE | Harmonised as EN 60812:2006 (not modified).   |
| IEC 61025:2006   | NOTE | Harmonised as EN 61025:2007 (not modified).   |
| IEC 61078:2006   | NOTE | Harmonised as EN 61078:2006 (not modified).   |
| IEC 61511-3:2003 | NOTE | Harmonised as EN 61511-3:2004 (not modified). |
| IEC 61703:2001   | NOTE | Harmonised as EN 61703:2002 (not modified).   |
|                  |      |                                               |

#### EVS-EN 62551:2012

## Annex ZA

(normative)

# Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

| Publication   | <u>Year</u> | Title                                                                                                        | <u>EN/HD</u> | Year |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------|--------------|------|
| IEC 60050-191 | 1990        | International Electrotechnical Vocabulary<br>(IEV) -<br>Chapter 191: Dependability and quality<br>of service | -            | -    |
|               |             | S.                                                                                                           |              |      |
|               |             | 000                                                                                                          |              |      |
|               |             | Č.                                                                                                           |              |      |
|               |             |                                                                                                              |              |      |
|               |             |                                                                                                              | Q.           |      |
|               |             |                                                                                                              | °0,          |      |
|               |             |                                                                                                              |              | 2    |
|               |             |                                                                                                              |              | S    |

## CONTENTS

| FOI                              |                                                                            | חסנ      |                   |                                                                             | 5          |  |
|----------------------------------|----------------------------------------------------------------------------|----------|-------------------|-----------------------------------------------------------------------------|------------|--|
| FOREWORD                         |                                                                            |          |                   |                                                                             |            |  |
| 1                                | TRODUCTION                                                                 |          |                   |                                                                             |            |  |
| 1                                | Scope                                                                      |          |                   |                                                                             | 8          |  |
| 2                                | Norm                                                                       | ative re | eterenc           | es                                                                          | 8          |  |
| 3                                | Terms, definitions, symbols and abbreviations                              |          |                   |                                                                             | 8          |  |
|                                  | 3.1 Terms and definitions                                                  |          |                   |                                                                             |            |  |
|                                  | 3.2                                                                        | Symbo    | Is and            | abbreviations                                                               | 10         |  |
| 4                                | General description of Petri nets                                          |          |                   |                                                                             | 12         |  |
| 4.1 Untimed low-level Petri nets |                                                                            |          |                   | 12                                                                          |            |  |
| 4.2 Timed low-level Petri nets   |                                                                            |          |                   | 12                                                                          |            |  |
|                                  | 4.3                                                                        | High-le  | evel Pe           | Erri nets                                                                   | 13         |  |
|                                  | 4.4                                                                        |          | IONS O            | ar conceptations of Datri not clemente                                      | 13         |  |
|                                  |                                                                            | 4.4.1    | Polot             | ionabin to the concents of dependability                                    | 13         |  |
| 5                                | Datri                                                                      | 4.4.2    | Reidi             | ility modelling and analysis                                                | 14         |  |
| 5                                | F - 1                                                                      |          |                   | he performed in general                                                     | 15         |  |
|                                  | 5.1<br>5.2                                                                 | Stope f  | eps lo<br>to be r | be performed in detail                                                      | 15<br>16   |  |
|                                  | 5.2                                                                        | 521      | Gene              | ral                                                                         | 10         |  |
|                                  |                                                                            | 522      | Desc              | rintion of main parts and functions of the system (Step 1)                  | 10         |  |
|                                  |                                                                            | 5.2.3    | Mode              | Iling the structure of the system on the basis of Petri net-                |            |  |
|                                  |                                                                            | 0.2.0    | subm              | odels and their relations (Step 2)                                          | 16         |  |
|                                  |                                                                            | 5.2.4    | Refin<br>achie    | ing the models of Step 2 until the required level of detail is ved (Step 3) | 18         |  |
|                                  |                                                                            | 5.2.5    | Analy             | vsing the model to achieve the results of interest (Step 4)                 | 18         |  |
|                                  |                                                                            | 5.2.6    | Repr              | esentation and interpretation of results of analyses (Step 5)               | 19         |  |
|                                  |                                                                            | 5.2.7    | Sumr              | nary of documentation (Step 6)                                              | 20         |  |
| 6                                | Relat                                                                      | ionship  | to oth            | er dependability models                                                     | 20         |  |
| Anr                              | nex A                                                                      | (informa | ative)            | Structure and dynamics of Petri nets                                        | 22         |  |
| Anr                              | Annex B (informative) Availability with redundancy m-out-of-n              |          |                   |                                                                             |            |  |
| Anr                              | nex C                                                                      | (informa | ative)            | Abstract example                                                            | 39         |  |
| Anr                              | Annex D (informative) Modelling typical dependability concepts             |          |                   |                                                                             |            |  |
| Anr                              | nex E                                                                      | (informa | ative)            | Level-crossing example                                                      | 45         |  |
| Bib                              | liogra                                                                     | 、<br>ohv | ,                 |                                                                             |            |  |
| 2.10                             |                                                                            |          |                   |                                                                             |            |  |
| Fig                              | ure 1                                                                      | – Weigh  | nted in           | hibitor arc                                                                 | 13         |  |
| Fig                              | ure 2                                                                      | – Place  | p is a            | multiple place                                                              | 14         |  |
| Fig                              | ure 3                                                                      | – Markir | ng on j           | <i>v</i> after firing of transition <i>t</i>                                | 14         |  |
| Fig                              | ure 4                                                                      | – The a  | ctivati           | on of t depends on the value of V                                           |            |  |
| Fig                              | ure 5                                                                      | – Metho  | dolog             | y consisting mainly of 'modelling', 'analysing' and 'representing'          | <b>1</b> 5 |  |
| Fig                              | ure 6                                                                      | – Proce  | ss for            | dependability modelling and analysing with Petri nets                       | 15         |  |
| Fig                              | ure 7                                                                      | – Model  | lling st          | ructure concerning the two main parts 'plant' and 'control' with            |            |  |
| 11100<br>Electron                | Figure 9. Indication of the analysis mathed as a function of the DN words. |          |                   |                                                                             |            |  |
| гıgı                             | ure 8                                                                      | - maica  |                   | the analysis method as a function of the PN model                           | 19         |  |

| Figure A.1 – Availability state-transition circle of a component                                                                                             | 22 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure A.2 – Transition 'failure' is enabled                                                                                                                 | 23 |
| Figure A.3 – 'Faulty' place marked due to firing of 'failure'                                                                                                | 23 |
| Figure A.4 – Transition 'comp <sub>1</sub> repair' is enabled                                                                                                | 24 |
| Figure A.5 – The token at the 'maintenance crew available' location is not used                                                                              | 24 |
| Figure A.6 – Transition is not enabled                                                                                                                       | 25 |
| Figure A.7 – Marking before firing                                                                                                                           | 25 |
| Figure A.8 – Marking after firing                                                                                                                            | 25 |
| Figure A.9 – PN with initial marking                                                                                                                         | 25 |
| Figure A.10 – Corresponding RG                                                                                                                               | 25 |
| Figure A.11 – Transitions 'comp <sub>lp</sub> repair' and 'comp <sub>hp</sub> failure' are enabled                                                           | 26 |
| Figure A.12 – Marking after firing of transition 'comp <sub>lp</sub> repair'                                                                                 | 27 |
| Figure A.13 – A timed PN with two exponentially distributed timed transitions                                                                                | 28 |
| Figure A.14 – The corresponding stochastic reachability graph                                                                                                | 28 |
| Figure A.15 – Petri net with timed transitions                                                                                                               | 29 |
| Figure B.1 – Two individual item availability nets with specific failure- and repair-rates                                                                   | 33 |
| Figure B.2 – Stochastic reachability graph corresponding to Figure B.1 with global                                                                           |    |
| states (as an abbreviation $\overline{c_1}$ is used for "comp <sub>1</sub> faulty")                                                                          | 33 |
| Figure B.3 – Three individual item availability nets with specific failure rates and repair rates                                                            | 33 |
| Figure B.4 – Stochastic reachability graph corresponding to Figure B.3 with global                                                                           |    |
| states (as an abbreviation $\bar{c}_1$ is used for 'comp <sub>1</sub> faulty')                                                                               | 34 |
| Figure B.5 – Specifically connected 1-out-of-3 availability net                                                                                              | 35 |
| Figure B.6 – Specifically connected 2-out-of-3 availability net                                                                                              | 35 |
| Figure B.7 – Specifically connected 3-out-of-3 availability net                                                                                              | 36 |
| Figure B.8 – Stochastic reachability graph with system specific operating states                                                                             | 36 |
| Figure B.9 – Specifically connected 1-out-of-3 reliability net                                                                                               | 37 |
| Figure B.10 – Reachability graph for the net in Figure B.9                                                                                                   | 37 |
| Figure B.11 – Specifically connected 2-out-of-3 reliability net                                                                                              | 37 |
| Figure B.12 – Reachability graph for the net in Figure B.11                                                                                                  | 37 |
| Figure B.13 – Specifically connected 3-out-of-3 reliability net                                                                                              | 38 |
| Figure B.14 – Reachability graph for the net in Figure B.13                                                                                                  | 38 |
| Figure C.1 – Individual availability net                                                                                                                     | 39 |
| Figure C.2 – Stochastic availability graph of the net in Figure C.1 with its global states and aggregated global states according to availability and safety | 39 |
| Figure C.3 – Basic reliability and function modelling concept                                                                                                | 40 |
| Figure C.4 – General hierarchical net with supertransitions to model reliability                                                                             | 41 |
| Figure C.5 – General hierarchical net with supertransitions and superplaces                                                                                  | 41 |
| Figure C.6 – General hierarchical net with supertransitions to model availability                                                                            | 41 |
| Figure C.7 – General hierarchical net with supertransitions and superplaces                                                                                  | 42 |
| Figure E.1 – Applied example of a level crossing and its protection system                                                                                   | 45 |
| Figure E.2 – Main parts of the level crossing example model                                                                                                  | 46 |
| Figure E.3 – Submodels of the level crossing example model                                                                                                   | 47 |
| Figure E.4 – PN model of car and train traffic processes                                                                                                     | 48 |

| Figure E.5 – PN model of the traffic processes and traffic dependability                                                                                                                                                                     | 49 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure E.6 – PN model of the traffic process with an ideal control function                                                                                                                                                                  | 50 |
| Figure E.7 – PN model of the level crossing example model                                                                                                                                                                                    | 51 |
| Figure E.8 – Collected measures of the road traffic flow of a particular level crossing:<br>Time intervals between two cars coming to the level crossing                                                                                     | 52 |
| Figure E.9 – Approximated probability distribution function based on the measures depicted in Figure E.5.                                                                                                                                    | 53 |
| Figure E.10 – Collected measurements of time spent by road vehicle in the danger zone of the level crossing                                                                                                                                  | 53 |
| Figure E.11 – Approximated probability distribution function based on measurements depicted in Figure E.10                                                                                                                                   | 54 |
| Figure E.12 – Aggregated RG and information about the corresponding states                                                                                                                                                                   | 59 |
| Figure E.13 – Results of the quantitative analysis showing the level crossing average availability for road traffic users as a function of the protection equipment hazard rate for different used activation and approaching times $T_{AC}$ | 60 |
| Figure E.14 – Results of the quantitative analysis showing the individual risk of the level crossing users as a function of the protection equipment hazard rate for different used activation and approaching times $T_{AC}$                | 60 |
| Figure E.15 – Availability safety diagram based on the quantitative results of the model analysis shown in Figure E.13 and Figure E.14                                                                                                       | 61 |
| Table 1 Symbols in untimed Patri patr                                                                                                                                                                                                        | 10 |
| Table 2 $-$ Additional symbols in timed Petri nets                                                                                                                                                                                           | 10 |
| Table 3 – Symbols for hierarchical modelling                                                                                                                                                                                                 |    |
| Table 4 – Corresponding concepts in systems. Petri nets and dependability                                                                                                                                                                    |    |
| Table 5 – Mandatory and recommended parts of documentation                                                                                                                                                                                   | 20 |
| Table A.1 – Corresponding concepts in systems, Petri nets, reachability graphs and dependability                                                                                                                                             | 26 |
| Table A.2 – Place and transition with rewards                                                                                                                                                                                                | 32 |
| Table D.1 – Dependability concepts modelled with PN structures                                                                                                                                                                               | 43 |
| Table D.2 – Modelling costs of states and events                                                                                                                                                                                             | 44 |
| Table E.1 – Car-related places in the submodel 'Traffic process' (see Figure E.4)                                                                                                                                                            | 52 |
| Table E.2 – Car-traffic related transitions in the submodel 'Traffic process' and Traffic dependability (see Figure E.7)                                                                                                                     | 55 |
| Table E.3 – Train-traffic related places in the submodel 'Traffic process' (see Figure E.7)                                                                                                                                                  | 55 |
| Table E.4 – Train-traffic related transitions in the submodel 'Traffic process' (see Figure E.7)                                                                                                                                             | 56 |
| Table E.5 – Places in the submodel 'Traffic dependability' (see Figure E.7)                                                                                                                                                                  | 56 |
| Table E.6 – Transitions in the submodel 'Traffic dependability' (see Figure E.7)                                                                                                                                                             | 56 |
| Table E.7 – Places in the submodel 'Control function' (see Figure E.7)                                                                                                                                                                       | 57 |
| Table E.8 – Transitions in the submodel 'Control function' (see Figure E.7)                                                                                                                                                                  | 57 |
| Table E.9 – Places in the submodel 'Control equipment dependability' (see Figure E.7)                                                                                                                                                        | 57 |
| Table E.10 – Transitions in the submodel 'Control equipment dependability' (see Figure E.7)                                                                                                                                                  | 58 |
| Table E.11 – Specification of boolean conditions for states to be subsumed in an   aggregated state                                                                                                                                          | 59 |

### INTRODUCTION

This International Standard provides a basic methodology for the representation of the basic elements of Petri nets (PNs) [1]<sup>1</sup> and provides guidance for application of the techniques in the dependability field.

The inherent power of Petri net modelling is its ability to describe the behaviour of a system by modelling the relationship between local states and local events. Against this background, Petri nets have gained widespread acceptance in many industrial fields of application (e.g. information, communication, transportation, production, processing and manufacturing and power engineering).

The conventional methods are very limited when dealing with actual industrial systems because they are neither able to handle multi-state systems, nor able to model dynamic system behaviour (e.g. fault tree or reliability Block diagrams), and can be subject to the combinatory explosion of the states to be handled (e.g. Markov process). Therefore, alternative modelling and calculating methods are needed.

Dependability calculations of an industrial system intend to model the various states of the system and how it evolves from one state to another when events (failures, repairs, periodic tests, night, day, etc.) occur.

Reliability engineers need a user-friendly graphical support to achieve their models. Due to their graphical presentation, Petri nets are a very promising modelling technique for dependability modelling and calculations.

Analytical calculations are limited to small systems and/or by strong hypothesis (e.g. exponential laws, low probabilities) to be fulfilled. A qualitative increase is needed to deal with industrial size systems. This may be done by going from analytical calculation to Monte Carlo simulation.

This standard aims at defining the consolidated basic principles of the PNs in the context of dependability and the current usage of Petri net PN modelling and analysing as a means for qualitatively and quantitatively assessing the dependability and risk-related measures of a system.

<sup>&</sup>lt;sup>1</sup> Figures in square brackets refer to the bibliography.

### ANALYSIS TECHNIQUES FOR DEPENDABILITY – PETRI NET TECHNIQUES

### 1 Scope

This International Standard provides guidance on a Petri net based methodology for dependability purposes. It supports modelling a system, analysing the model and presenting the analysis results. This methodology is oriented to dependability-related measures with all the related features, such as reliability, availability, production availability, maintainability and safety (e.g. safety integrity level (SIL) [2] related measures).

This standard deals with the following topics in relation to Petri nets:

- a) defining the essential terms and symbols and describing their usage and methods of graphical representation;
- b) outlining the terminology and its relation to dependability;
- c) presenting a step-by-step approach for
  - 1) dependability modelling with Petri nets,
  - 2) guiding the usage of Petri net based techniques for qualitative and quantitative dependability analyses,
  - 3) representing and interpreting the analysis results;
- d) outlining the relationship of Petri nets to other modelling techniques;
- e) providing practical examples.

This standard does not give guidance on how to solve mathematical problems that arise when analysing a PN; such guidance can be found in [3] and [4].

This standard is applicable to all industries where qualitative and quantitative dependability analyses is performed.

### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-191:1990, International Electrotechnical Vocabulary – Chapter 191: Dependability and quality of service

### 3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms and definitions given in IEC 60050-191, as well as the following terms and definitions, apply.

### 3.1 Terms and definitions

3.1.1

#### component

constituent part of a device which cannot be physically divided into smaller parts without losing its particular function