TECHNICAL REPORT

CEN/TR 17365

RAPPORT TECHNIQUE

TECHNISCHER BERICHT

May 2019

ICS 91.100.10

English Version

Method for the determination of C3A in the clinker from cement analysis

Verfahren für die Bestimmung des C3A-Gehalts im Klinker aus der Zementanalyse

This Technical Report was approved by CEN on 12 May 2019. It has been drawn up by the Technical Committee CEN/TC 51.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Con	tents		Page
Euroi	pean foreword		3
1	Scope		
2	Normative references		
3	Terms and definitions		4
4	Principle of the method		4
5	Expression of masses, volumes, factors and	results	5
6	Ignitions		
7	Determination of constant mass		5
8	Preparation of a test sample of cement		6
9	Reagents		6
10	Apparatus		8
11	Determination of BCR residue on cement		10
12	Decomposition of the test sample for CEM I a	and IV type cements	11
13	Decomposition of the BCR residue and preci	pitation of silica in the residue	12
14	Chemical analysis of the filtrate obtained fi the filtrate obtained from treatment of the E		
15	Determination of Sulfur trioxide (SO ₃)		14
16	Volumetric determination of carbon dioxide	e (CO ₂) in the cement test sample	14
17	Chemical analysis by X-ray fluorescence	<u> </u>	17
18	Calculation and expression of results		17
19	Repeatability and reproducibility		18
Biblic	ography		19
			5

European foreword

This document (CEN/TR 17365:2019) has been prepared by Technical Committee CEN/TC 51 "Cement and building limes", the secretariat of which is held by NBN.

, th.

In to the ,

IN shall not i. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

1 Scope

This document describes the analytical procedures used to determine the content of C_3A in the clinker starting from a chemical analysis on cement. The method can be applied to CEM type I and IV for the determination of the requirement of C_3A , as defined on EN 197-1.

This document describes two methods, traditional wet and XRF analysis (EN 196-2), which can be considered to be equivalent, in the scope of this CEN/TR 17365, for the determination of Al_2O_3 , Fe_2O_3 and SO_3 .

The same methods are described in EN 196-2, but for the scope of this document, the X-ray fluorescence (XRF) is the preferred method to be used for the determination of Al_2O_3 , Fe_2O_3 and SO_3 .

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 196-2, Method of testing cement — Part 2: Chemical analysis of cement

EN 196-7, Methods of testing cement — Part 7: Methods of taking and preparing samples of cement

ISO 385, Laboratory glassware — Burettes

ISO 835, Laboratory glassware — Graduated pipettes

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 Principle of the method

The principle of the method is based on the calculation of the amounts of Al_2O_3 and Fe_2O_3 that may be occurring in the clinker by the chemical analysis of cement corrected for the oxide fraction resulting from materials other than clinker.

Once Al_2O_3 and Fe_2O_3 values are obtained, the amount of C_3A in the clinker is calculated according to Bogue.

The following assumptions should be made to determine the Al_2O_3 and Fe_2O_3 amounts in the clinker:

- a) Any sulfate occurring in the cement is ascribable to $CaSO_4 \cdot 2H_2O$; all determined CO_2 is $CaCO_3$. Moreover, the Al_2O_3 and Fe_2O_3 input from minor additional constituents and calcium sulfate is assumed to be zero.
- b) The residue from the base-complexing agent treatment (BCR) is constituted by pozzolanic materials only (natural pozzolana, siliceous fly ash and microsilica) and the dissolution is selective and complete.