INTERNATIONAL STANDARD

ISO 21968

Second edition 2019-09

Non-magnetic metallic coatings on metallic and non-metallic basis materials — Measurement of coating thickness — Phase-sensitive eddycurrent method

Revêtements métalliques non magnétiques sur des matériaux de base métalliques et non métalliques — Mesurage de l'épaisseur de revêtement — Méthode par courants de Foucault sensible aux variations de phase

Reference number ISO 21968:2019(E)

© ISO 2019

plementation, no partanical, includir requested fr All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents			Page
Forev	vord		iv
1	Scope	9	1
2	Norn	native references	1
3	Term	s and definitions	1
4		riple of measurement	
5	Factors affecting measurement uncertainty		
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Basic influence of the coating thickness Electrical properties of the coating Geometry — Base material thickness Geometry — Edge effects Geometry — Surface curvature Surface roughness Lift-off effect	5 5 5 6 6
	5.8 5.9 5.10 5.11 5.12	Probe pressure Probe tilt Temperature effects Intermediate coatings External electromagnetic fields	8 8
6	Calib 6.1 6.2 6.3	ration and adjustment of the instrument General Thickness reference standards Methods of adjustment	8 9
7	7.1 7.2	urement procedure and evaluation General Number of measurements and evaluation	10 10
8	Unce 8.1 8.2 8.3 8.4 8.5	Ttainty of the results General remarks Uncertainty of the calibration of the instrument Stochastic errors Uncertainties caused by factors summarized in Clause 5 Combined uncertainty, expanded uncertainty and final result	11 11 12
9	Precision		
	9.1 9.2 9.3	General Repeatability (r) Reproducibility limit (R)	14 14
10	Test	report	17
Anne	x A (inf	Formative) Eddy-current generation in a metallic conductor	18
	x B (inf	formative) Basics of the determination of the uncertainty of a measurement of sed measurement method corresponding to ISO/IEC Guide 98-3	
Anne		ormative) Basic performance requirements for coating thickness gauges based e phase-sensitive eddy-current method described in this document	26
Anne		formative) Examples for the experimental estimation of factors affecting the curement accuracy	28
Anne	x E (inf	ormative) Table of the student factor	33
Anne	x F (inf	ormative) Example of uncertainty estimation	34
Anne	x G (inf	formative) Details on precision	37
Rihlia	ngranh	v	39

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/107, *Metallic and other inorganic coatings*.

This second edition cancels and replaces the first edition (ISO 21968:2005), which has been technically revised. The main changes compared with the previous edition are as follows:

- this document has been adapted to the current requirements of ISO/IEC Guide 98-3 (also known as "GUM:1995");
- hints, practical examples and simple estimations of the measurement uncertainty for most important factors have been added;
- repeatability and reproducibility values for typical applications of the method have been added;
- the annex has been expanded with further applications and experimental estimations of factors affecting the accuracy.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Non-magnetic metallic coatings on metallic and nonmetallic basis materials — Measurement of coating thickness — Phase-sensitive eddy-current method

1 Scope

This document specifies a method for using phase-sensitive eddy-current instruments for non-destructive measurements of the thickness of non-magnetic metallic coatings on metallic and non-metallic basis materials such as:

- a) zinc, cadmium, copper, tin or chromium on steel;
- b) copper or silver on composite materials.

The phase-sensitive method can be applied without thickness errors to smaller surface areas and to stronger surface curvatures than the amplitude-sensitive eddy-current method specified in ISO 2360, and is less affected by the magnetic properties of the basis material. However, the phase-sensitive method is more affected by the electrical properties of the coating materials.

In this document, the term "coating" is used for materials such as, for example, paints and varnishes, electroplated coatings, enamel coatings, plastic coatings, claddings and powder coatings.

This method is particularly applicable to measurements of the thickness of metallic coatings. These coatings can be non-magnetic metallic coatings on non-conductive, conductive or magnetic base materials, but also magnetic coatings on non-conductive or conductive base materials.

The measurement of metallic coatings on metallic basis material works only when the product of conductivity and permeability (σ, μ) of one of the materials is at least a factor of two times the product of conductivity and permeability for the other material. Non-ferromagnetic materials have a relative permeability of one.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

 $ISO\ 2064, \textit{Metallic}\ and\ other\ inorganic\ coatings -- \textit{Definitions}\ and\ conventions\ concerning\ the\ measurement\ of\ thickness$

ISO 4618, Paints and varnishes — Terms and definitions

ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 2064, ISO 4618 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp