INTERNATIONAL STANDARD

ISO 22125-1

First edition 2019-11

Water quality — Technetium-99 —

Part 1:

Test method using liquid scintillation counting

Qualité de l'eau — Technétium-99 —

Partie 1: Méthode d'essai par comptage des scintillations en milieu liquide

© ISO 2019

olementation, no partanical, includir requested fr All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

CO	ntents		Page
Fore	eword		iv
Intr	oduction		v
1	Scope		1
2	Normative references		1
3	Terms, definitions and symbols		2
4	Principle		3
5	Sampling and storage		4
6	Procedure		4
	6.1 Sample preparation for measureme	nt	4
7	Quality assurance and quality control pr	rogram	<u>5</u>
		neasurement	
	7.3 Instrument verification		5
		······································	
	7.8 Sample measurement		6
8	Expression of results		
		tainties	
	8.4 Confidence interval limits		9
	8.5 Calculation using the activity per un	nit of volume	9
		n to mass concentrationo volume unit	
9	Test report		
	ex A (informative) Method 1 — TEVA resin		12
Ann	ex B (informative) Method 2 — TRU resin		12
AIIII	ex C (informative) Method 3 — Anion exchar		15
Bibl	iography		20
		<i>Y</i>	
			5

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 3, *Radioactivity measurements*.

A list of all the parts in the ISO 22125 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Radioactivity from several naturally-occurring and anthropogenic sources is present throughout the environment. Thus, water bodies (such as surface waters, ground waters, sea waters) can contain radionuclides of natural, human-made, or both origins.

- Natural radionuclides, including ⁴⁰K, ³H, ¹⁴C, and those originating from the thorium and uranium decay series, in particular ²²⁶Ra, ²²⁸Ra, ²³⁴U, ²³⁸U, ²¹⁰Po and ²¹⁰Pb can be found in water for natural reasons (e.g. desorption from the soil and washoff by rain water) or can be released from technological processes involving naturally occurring radioactive materials (e.g. the mining and processing of mineral sands or phosphate fertilizers production and use).
- Human-made radionuclides such as transuranium elements (americium, plutonium, neptunium, curium), ³H, ¹⁴C, ⁹⁰Sr, and gamma emitting radionuclides can also be found in natural waters. Small quantities of these radionuclides are discharged from nuclear fuel cycle facilities into the environment as a result of authorized routine releases. Some of these radionuclides used for medical and industrial applications are also released into the environment after use. Anthropogenic radionuclides are also found in waters as a result of past fallout contaminations resulting from the explosion in the atmosphere of nuclear devices and accidents such as those that occurred in Chernobyl and Fukushima.

Radionuclide activity concentration in water bodies can vary according to local geological characteristics and climatic conditions and can be locally and temporally enhanced by releases from nuclear installation during planned, existing, and emergency exposure situations^[1]. Drinking water may thus contain radionuclides at activity concentrations which could present a risk to human health.

The radionuclides present in liquid effluents are usually controlled before being discharged into the environment [2] and water bodies. Drinking waters are monitored for their radioactivity content as recommended by the World Health Organization (WHO)[3] so that proper actions can be taken to ensure that there is no adverse health effect to the public. Following these international recommendations, national regulations usually specify radionuclide authorized concentration limits for liquid effluent discharged to the environment and radionuclide guidance levels for waterbodies and drinking waters for planned, existing, and emergency exposure situations. Compliance with these limits can be assessed using measurement results with their associated uncertainties as specified by ISO/IEC Guide 98-3 and ISO 5667-20[4].

Depending on the exposure situation, there are different limits and guidance levels that would result in an action to reduce health risk. As an example, during planned or existing situation, the WHO guidelines for guidance level in drinking water is $100~\text{Bq}\cdot\text{l}^{-1}$ for ^{99}Tc activity concentration.

NOTE 1 The guidance level is the activity concentration with an intake of 2 l/d of drinking water for one year that results in an effective dose of 0,1 mSv/a for members of the public. This is an effective dose that represents a very low level of risk and which is not expected to give rise to any detectable adverse health effects^[3].

In the event of a nuclear emergency, the WHO Codex Guideline Levels^[5] mentioned that the activity concentration on contaminated food might not be greater than 10 000 Bq·kg⁻¹ for ⁹⁹Tc.

NOTE 2 The Codex guidelines levels (GLs) apply to radionuclides contained in foods destined for human consumption and traded internationally, which have been contaminated following a nuclear or radiological emergency. These GLs apply to food after reconstitution or as prepared for consumption, i.e. not to dried or concentrated foods, and are based on an intervention exemption level of 1 mSv in a year for members of the public (infant and adult)^[5].

Thus, the test method can be adapted so that the characteristic limits, decision threshold, detection limit and uncertainties ensure that the radionuclide activity concentrations test results can be verified to be below the guidance levels required by a national authority for either planned/existing situations or for an emergency situation^{[5][6][7]}.

Usually, the test methods can be adjusted to measure the activity concentration of the radionuclide(s) in either wastewaters before storage or in liquid effluents before being discharged to the environment.

ISO 22125-1:2019(E)

The test results will enable the plant/installation operator to verify that, before their discharge, wastewaters/liquid effluent radioactive activity concentrations do not exceed authorized limits.

The test method(s) described in this document may be used during planned, existing and emergency exposure situations as well as for wastewaters and liquid effluents with specific modifications that can increase the overall uncertainty, detection limit, and threshold.

The test method(s) may be used for water samples after proper sampling, sample handling, and test sample preparation (see the relevant part of the ISO 5667 series).

This document has been developed to answer the need of test laboratories carrying out these measurements, that are sometimes required by national authorities, as they may have to obtain a specific accreditation for radionuclide measurement in drinking water samples.

rnatio. ionuclide. This document is one of a set of International Standards on test methods dealing with the measurement of the activity concentration of radionuclides in water samples.

Water quality — Technetium-99 —

Part 1:

Test method using liquid scintillation counting

WARNING — Persons using this document should be familiar with normal laboratory practices. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to determine the applicability of any other restrictions.

IMPORTANT — It is absolutely essential that tests conducted according to this document be carried out by suitably trained staff.

1 Scope

This document specifies a method for the measurement of ⁹⁹Tc in all types of waters by liquid scintillation counting (LSC).

The method is applicable to test samples of supply/drinking water, rainwater, surface and ground water, as well as cooling water, industrial water, domestic, and industrial wastewater after proper sampling and handling, and test sample preparation. A filtration of the test sample is necessary.

The detection limit depends on the sample volume and the instrument used. The method described in this document, using currently available LSC instruments, has a detection limit of approximately 5 Bq·kg⁻¹ to 20 Bq·kg⁻¹, which is lower than the WHO criteria for safe consumption of drinking water (100 Bq l⁻¹)[3]. These values can be achieved with a counting time of 30 min for a sample volume varying between 14 ml to 40 ml. The method presented in this document is not intended for the determination of ultra-trace amount of 99 Tc.

The activity concentration values in this document are expressed by sample mass unit instead of sample volume unit as it is usually the case in similar standards. The reason is that ⁹⁹Tc is measured in various matrix types such as fresh water or sea water, which have significant differences in density. The activity concentration values can be easily converted to sample volume unit by measuring the sample volume. However, it increases the uncertainty on the activity concentration result.

The method described in this document is applicable in the event of an emergency situation, but not if 99 mTc is present at quantities that could cause interference and not if 99 mTc is used as a recovery tracer.

The analysis of Tc adsorbed to suspended matter is not covered by this method.

It is the user's responsibility to ensure the validity of this test method for the water samples tested.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

ISO/IEC Guide 99, International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 22125-1:2019(E)

ISO 5667-1, Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and sampling techniques

ISO 5667-3, Water quality — Sampling — Part 3: Preservation and handling of water samples

ISO 5667-10, Water quality — Sampling — Part 10: Guidance on sampling of waste waters

ISO 10703, Water quality — Determination of the activity concentration of radionuclides — Method by high resolution gamma-ray spectrometry

ISO 11929, Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation — Fundamentals and application

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

ISO 19361, Measurement of radioactivity — Determination of beta emitters activities — Test method using liquid scintillation counting

ISO 20042, Measurement of radioactivity — Gamma emitting radionuclides — Generic test method using gamma spectrometry

ISO 80000-10, Quantities and units — Part 10: Atomic and nuclear physics

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 80000-10, ISO 11929, ISO/IEC Guide 98-3 and ISO/IEC Guide 99 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.2 Symbols

For the purposes of this document, the symbols and designations given in ISO 80000-10, ISO 11929, ISO/IEC Guide 98-3, ISO/IEC Guide 99 and the following apply.

Symbol	Term	Unit
c_A^*	decision threshold	Bq⋅kg ⁻¹
c #	detection limit	Bq⋅kg ⁻¹
c_A^{\triangleleft} , c_A^{\triangleright}	lower and upper limits of the confidence interval	Bq·kg⁻¹
$c_{A\rho}^{\#}$	detection limit in mass concentration	g·kg ^{−1}
A	activity of the calibration source	Bq
A_{T}	tracer activity	Bq
A_{Tm}	tracer activity measured	Bq
c_A	activity concentration	Bq⋅kg ⁻¹
c_{m}	mass concentration	g·kg ⁻¹
C_s	specific activity	Bq·g ^{−1}