INTERNATIONAL STANDARD ## ISO/ASTM 52915 Third edition 2020-03 # Specification for additive manufacturing file format (AMF) Version 1.2 ific. AF) Ver. Spécification pour le format de fichier pour la fabrication additive (AMF) Version 1.2 Reference number ISO/ASTM 52915:2020(E) © ISO/ASTM International 2020 atation, no part of this 'i.including photoe 'I from either I' void be ser '70' All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. In the United States, such requests should be sent to ASTM International. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland **ASTM International** 100 Barr Harbor Drive, PO Box C700 West Conshohocken, PA 19428-2959, USA Phone: +610 832 9634 Fax: +610 832 9635 Email: khooper@astm.org Website: www.astm.org | Coi | ntents | Page | |-------|--|--------| | Fore | word | iv | | Intro | oduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Key considerations 4.1 General | 2 | | | 4.2 Guidelines for the inclusion of future new elements | | | 5 | Structure of this specification | | | 6 | General structure | | | 7 | Geometry specification 7.1 General | | | | 7.1 General 7.2 Smooth geometry 7.3 Restrictions on 0.3 Restr | 6 | | 8 | Material specification | | | | 8.1 General | | | | 8.2 Mixed and graded materials and substructures | 9
9 | | | 8.4 Stochastic materials | 10 | | 9 | Colour specification | | | | 9.1 General 9.2 Colour gradations and texture mapping | | | | 9.3 Transparency | 12 | | 10 | Texture specification | 12 | | 11 | Constellations | 12 | | 12 | Metadata | 13 | | 13 | Compression and distribution | 14 | | 14 | Minimal implementation | 14 | | Ann | ex A (informative) AMF XML schema implementation guide | 15 | | Ann | ex B (informative) Performance data and future features | 24 | | | iography | 27 | | | | 5 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 261, *Additive manufacturing*, in cooperation with ASTM F 42.91, *Terminology*, on the basis of a partnership agreement between ISO and ASTM International with the aim to create a common set of ISO/ASTM standards on Additive Manufacturing. This second edition cancels and replaces the first edition (ISO/ASTM 52915:2016), which has been technically revised. The main changes compared to the previous edition are as follows: - Harmonization of the terminology definition shared with ISO/ASTM 52900 in 3.8; - Corrections to <u>Figures 1</u> to <u>6</u> in <u>7.1</u>, <u>8.1.2</u>, <u>9.1.1</u>, <u>11.4</u> and <u>12</u>; - Corrections of typographic issues in <u>Table A.1</u> and Table A.4. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### Introduction This document describes an interchange format to address the current and future needs of additive manufacturing technology. For the last three decades, the stereolithography (STL) file format has been the industry standard for transferring information between design programs and additive manufacturing equipment. An STL file defines only a surface mesh and has no provisions for representing colour, texture, material, substructure and other properties of the fabricated object. As additive manufacturing technology is evolving quickly from producing primarily single-material, homogeneous objects to producing geometries in full colour with functionally defined gradations of materials and microstructures, there is a growing need for a standard interchange file format that can support these features. The Additive Manufacturing File Format (AMF) has many benefits. It describes an object in such a general way that any machine can build it to the best of its ability, and as such is technology independent. It is easy to implement and understand, scalable and has good performance. Crucially, it Tas ac is both backwards compatible, allowing any existing STL file to be converted, and future compatible, allowing new features to be added as advances in technology warrant. This document is a previous general ded by tills ## Specification for additive manufacturing file format (AMF) Version 1.2 #### 1 Scope This document provides the specification for the Additive Manufacturing File Format (AMF), an interchange format to address the current and future needs of additive manufacturing technology. This document specifies the requirements for the preparation, display and transmission for the AMF. When prepared in a structured electronic format, strict adherence to an extensible markup language (XML)^[1] schema supports standards-compliant interoperability. NOTE A W3C XML schema definition (XSD) for the AMF is available from ISO from http://standards.iso.org/ iso/52915 and from ASTM from www.astm.org/MEETINGS/images/amf.xsd. An implementation guide for such an XML schema is provided in An implementation guide for such an XML schema is provided in An implementation guide for such an XML schema is provided in www.astm.org/MEETINGS/images/amf.xsd. An implementation guide for such an XML schema is provided in www.astm.org/MEETINGS/images/amf.xsd. It is recognized that there is additional information relevant to the final part that is not covered by the current version of this document. Suggested future features are listed in <u>Annex B</u>. This document does not specify any explicit mechanisms for ensuring data integrity, electronic signatures and encryptions. #### 2 Normative references There are no normative references in this document. #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ #### 3.1 #### **AMF** consumer software reading (parsing) the Additive Manufacturing File Format (AMF) file for fabrication, visualization or analysis Note 1 to entry: AMF files are typically imported by additive manufacturing equipment, as well as viewing, analysis and verification software. #### 3.2 #### **AMF** editor software reading and rewriting the Additive Manufacturing File Format (AMF) file for conversion Note 1 to entry: AMF editor applications are used to convert an AMF from one form to another, for example, convert all curved triangles to flat triangles or convert porous material specification into an explicit mesh surface.