TECHNICAL SPECIFICATION

ISO/TS 31657-3

First edition 2020-06

Plain bearings — Hydrodynamic plain journal bearings under steady-state conditions —

Part 3:

Functions for calculation of tilting pad journal bearings

Reference number ISO/TS 31657-3:2020(E)

© ISO 2020

nentation, no part of vical, including pluested from All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org

Website: www.iso.org Published in Switzerland

Contents	Page
Foreword	iv
1 Scope	
2 Normative references	1
3 Terms and definitions	1
4 Functions for calculation of multi-lobed journal bearings	
4.1 General 4.2 Tilting-pad journal bearings with four tilting pads	4
4.3 Tilting-pad journal bearings with five tilting pads	39
Annex A (informative) Characteristic curves for tilting-pad bearings with five	
Bibliography	
© ISO 2020 – All rights reserved	iii

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 8, *Calculation methods for plain bearings and their applications*.

A list of all parts in the ISO/TS 31657 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Plain bearings — Hydrodynamic plain journal bearings under steady-state conditions —

Part 3:

Functions for calculation of tilting pad journal bearings

1 Scope

This document specifies the characteristic values for selected tilting-pad journal bearings with four or five centrally or eccentrically supported tilting pads and with angular spans of pad sliding surfaces of Ω = 80°, 60° and 45°.

The functions plotted and listed in table form below are required for the operationally safe design of hydrodynamic tilting-pad journal bearings according to ISO/TS 31657-1. They are based on the presumptions and boundary conditions indicated there and only apply to stationary operating states. The symbols used are explained in ISO/TS 31657-1; calculation examples are also included there.

The calculation method described in ISO/TS 31657-1 can also be used for other tilting-pad journal bearing designs, if the numerical solutions of the basic equations are available in the same manner for these designs.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Functions for calculation of multi-lobed journal bearings

4.1 General

The characteristic values for symmetrically loaded tilting-pad journal bearings with four and five centrally (relative angular distance between leading edge and pivot position of pad $\Omega_F^* = 0.5$) or eccentrically ($\Omega_F^* = 0.6$) supported tilting pads are indicated below in table form.

The characteristic values were calculated for the geometrical parameters summarised in Figure 1 (angular spans of pad sliding surface Ω , angular coordinates of pivot position of pad $\varphi_{F,1}$, profile factors