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INTERNATIONAL ELECTROTECHNICAL COMMISSION

HYDRAULIC MACHINES - FRANCIS TURBINE
PRESSURE FLUCTUATION TRANSPOSITION

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

All users should ensure that they have the latest edition of this publication.

No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional
circumstances, a technical committee may propose the publication of a technical specification
when

the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts, or

the subject is still under technical development or where, for any other reason, there is the
future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether
they can be transformed into International Standards.

IEC TS 62882, which is a Technical Specification, has been prepared IEC technical committee
4: Hydraulic turbines.
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The text of this Technical Specification is based on the following documents:

Enquiry draft Report on voting
4/375/DTS 4/398/RVDTS

Full information on the voting for the approval of this technical specification can be found in the
report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to
the specific document. At this date, the document will be

e reconfirmed,

e withdrawn,

e replaced by a revised edition, or

e amended.

IMPORTANT - The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.
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INTRODUCTION

With the increased amount of renewable energy that is being added to the electrical grid in the
form of wind and solar, in addition to new energy in the form of nuclear, the grid needs to
integrate more hydropower generation with flexible operation to balance loads. To meet this
challenge, the hydraulic stability of the machine has become more and more important.

The current document provides a technical specification for Francis turbine pressure
fluctuations. This document aims to describe pressure fluctuations, their phenomena and
related problems, to define the relationship between model and prototype fluctuations, to
identify methods to predict pressure fluctuations in prototypes through transposition of model
measurements, and to suggest potential mitigations.

In this document, the term "turbine" refers to Francis turbines and pump-turbine operating as a
turbine.

This document excludes all matters of purely commercial interest, except those inextricably
bound within the conduct of the tests.
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HYDRAULIC MACHINES - FRANCIS TURBINE
PRESSURE FLUCTUATION TRANSPOSITION

1 Scope

IEC 62882, which is a Technical Specification, provides pressure fluctuation transposition
methods for Francis turbines and pump-turbines operating as turbines, including:

— description of pressure fluctuations, the phenomena causing them and the related problems;

— characterization of the phenomena covered by this document, including but not limited to
inter-blade vortices, draft tube vortices rope and rotor-stator interaction;

— demonstration that both operating conditions and Thoma numbers (cavitation conditions)
are primary parameters influencing pressure fluctuations;

— recommendation of ways to measure and analyse pressure fluctuations;
— identification of potential resonances in test rigs and prototypes;

— identification of methods, to transpose the measurement results from model to prototype or
provide ways to predict pressure fluctuations in prototypes based on statistics or experience;

— recommendation of a data acquisition system, including the type and mounting position of
model and prototype transducers and to define the similitude condition between model and
prototype;

— presentation of pressure fluctuation measurements comparing the model turbine and the
corresponding prototype;

— discussion of parameters used for the transposition from model to prototype, for example,
the peak to peak value at 97 % confidence interval, the RMS value or the standard deviation
in the time domain and the relation of main frequency and the rotational frequency in the
frequency domain obtained by FFT,;

— discussion of the uncertainty of the pressure fluctuation transposition from model to
prototype;

— discussion of factors which influence the transposition, including those which cannot be
simulated on the model test rig such as waterway system and mechanical system;

— establishment of the transposition methods for different types of pressure fluctuations;
— suggestion of possible methods for mitigating pressure fluctuation;
— definition of the limitations of the specification.

This document is limited to normal operation conditions. Hydraulic stability phenomena related
to von Karman vortices, transients, runaway speed and speed no load are excluded from this
document.

This document provides means to identify potential resonances in model test rigs and prototype
turbines. Scaling-up resonance conditions are not treated in this document. When resonance
exists, the transposition methods identified in this document do not apply. Under these
conditions, the relationship between model and prototype pressure fluctuations cannot be
determined.

This document is concerned neither with the structural details of the machines nor the
mechanical properties of their components, so long as these characteristics do not affect model
pressure fluctuations or the relationship between model and prototype pressure fluctuations.
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2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 60193:2019, Hydraulic turbines, storage pumps and pump-turbines — Model acceptance
tests

3 Terms, definitions, symbols and units
For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following
addresses:

e |EC Electropedia: available at http://www.electropedia.org/
e |SO Online browsing platform: available at http://www.iso.org/obp

The contracting parties shall, in advance of the test, agree to clarification in writing of any term,
definition or unit of measure in question.

3.1 General terms and definitions

Entry number Term Definition

3.11 Point item established by one or more consecutive sets of readings and/or
recordings at unchanged operating condition and settings, sufficient to
calculate the performance of the machine at this operating condition and
these settings

3.1.2 Test collection of points that is adequate to establish the performance of the
machine over a specified range of operating conditions
3.1.3 Hydraulic performance parameters attributable to the machine due to hydrodynamic
performance effects
3.1.4 Main hydraulic subset of the hydraulic performance parameters, i.e. power, discharge

performance data | and/or specific hydraulic energy, efficiency, pressure fluctuation, steady-
state runaway speed and/or discharge?

3.1.5 Additional data subset of hydraulic performance data, which can be determined for
information on the model®

3.1.6 Guarantees specified performance data contractually agreed to

28 The influence of cavitation shall be considered.

b The prediction of the corresponding prototype data is less accurate than that achievable for the main

hydraulic performance data, due to application of approximate similarity rules.

3.2 Units

The International System of Units (SI, see ISO 80000-4 [193]1) has been used throughout this
document.

All terms are given in Sl base units or derived coherent units2. The basic equations are valid
using these units. If other units are used for certain data which are not coherent Sl units, proper
consideration shall be provided. Examples of non-coherent units include kilowatt instead of watt

1 Numbers in square brackets refer to the Bibliography.

2 N=kgms?2 Pa=kgm's?2 J=kg'm2s?2 W=kgm?s3


http://www.electropedia.org/
http://www.iso.org/obp
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