INTERNATIONAL STANDARD ISO 19935-2 First edition 2020-09 ## Plastics — Temperature modulated DSC — Part 2: # Measurement of specific heat capacity c_p Plastiques — DSC à température modulée — Partie 2: Mesurage précis de la chaleur spécifique $c_{\rm p}$ © ISO 2020 nentation, no part of vical, including piruested from All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | Page | |----------|--|------------------| | Fore | eword | iv | | Intr | oduction | v | | 1 | Scope | 1 | | 2 | Normative references | | | 3 | Terms and definitions | 1 | | 4 | Symbols and abbreviated terms 4.1 Temperature modulation, <i>T(t)</i> 4.2 Scanning rate 4.3 Heat flow rate, Φ(t) | 1
1 | | 5 | Principles of determination of specific heat capacity with temperature modulated E 5.1 General 5.2 Specific heat capacity with no processes 5.3 Reversing and non-reversing specific heat capacity 5.4 Step scan method 5.5 Multiple frequencies | 2
2
2 | | 6 | Apparatus and materials 6.1 General 6.2 Temperature control of the modulated differential scanning calorimeter | 2 | | 7 | Calibration 7.1 General 7.2 Calibration of modulation amplitude 7.3 Calibration of phase | 3
3 | | 8 | Procedure 8.1 General 8.2 Calculation of the specific heat capacity 8.3 Examples of the results 8.3.1 Modulated heat flow rate and scanning rate of modulation 8.3.2 Determination of specific heat capacity | 3
4
4
4 | | 9 | Precision and bias | 6 | | 10 | Test report | 7 | | Ann | nex A (informative) Example of the c _p values of polystyrene (PS) | | | | ex B (informative) Example of the calibration constant $K(ω)$ determined with the literature values of α- Al_2O_3 [3] | | | Ann | nex C (informative) Example of a reversing heat flow rate curve based on a modulated heat flow rate curve and a comparison with the specific heat capacity | 11 | | Ann | nex D (informative) Example of determination of specific heat capacity based on a multifrequency modulated heat flow rate curve | 12 | | Rihl | liography | 14 | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*. A list of all parts in the ISO 19935 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ## Introduction This document describes the realization of standardized thermoanalytical test methods which can be used for the determination of specific heat capacity data needed for data sheets or databases as well as for research purposes. It can also be applied to quality assurance or to routine checks of raw materials and finished products, if desired. The procedures mentioned in this document apply as long as special product standards or standards describing special atmospheres for conditioning of samples do not require alternate regulations. atio, , ations of . the regulat. For scientific investigations or resolution of special analytical problems, all technical capabilities of the instruments beyond the regulations of this document may be used. This document is a previous general ded by tills ## Plastics — Temperature modulated DSC — ## Part 2: ## Measurement of specific heat capacity $c_{\rm n}$ ## Scope This document establishes a method for measurement of specific heat capacity, $c_{\rm p}$, using temperature modulated differential scanning calorimetry. ## **Normative references** The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 472, *Plastics — Vocabulary* ISO 11357-1, Plastics — Differential scanning calorimetry (DSC) — Part 1: General principles ISO 19935-1, Plastics — Temperature modulated DSC — Part 1: General principles ISO 80000-5, Quantities and units — Part 5: Thermodynamics ### Terms and definitions For the purposes of this document, the terms and definitions given in ISO 472, ISO 11357-1, ISO 19935-1 and ISO 80000-5 apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ ## 4 Symbols and abbreviated terms ## 4.1 Temperature modulation, T(t) According to ISO 19935-1. #### 4.2 Scanning rate According to ISO 19935-1. #### 4.3 Heat flow rate, $\Phi(t)$ According to ISO 19935-1.