

EC 62793:2020-09(en)

Edition 2.0 2020-09

INTERNATIONAL

Thunderstorm warning systems – Protection against lightning

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

Edition 2.0 2020-09

INTERNATIONAL STANDARD 2 Martis

Thunderstorm warning systems - Protection against lightning

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.020; 91.120.40

ISBN 978-2-8322-8725-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4
INTRODUCTION	6
1 Scope	7
2 Normative references	
3 Terms, definitions and abbreviated terms	
3.1 Terms and definitions	
3.2 Abbreviated terms	
4 Thunderstorm phases and detectable phenomena for alarming	
5 Description of thunderstorm detectors and their properties	
6 Alarm method	
6.1 General	
6.2 Areas	
6.2.1 Target (TA)	
6.2.2 Surrounding area (SA)	
6.2.3 Monitoring area (MA)	
6.2.4 Coverage area (CA).	
6.3 Alarm triggering and clearing	
6.4 Alarm information delivery	
7 Installation	18
8 Maintenance	19
9 Performance evaluation	19
9.1 General	19
9.2 Evaluation of a TWS by cross-correlation with other sources of information	20
10 TWS application	
Annex A (informative) Overview of the lightning phenomena	22
A.1 Origin of thunderclouds and electrification	
A.2 Lightning phenomena	22
A.3 Electric thunderstorm and lightning characteristics useful for prevention	
A.3.1 Electrostatic field	0.4
A.3.2 Electromagnetic fields	
A.3.3 Other parameters useful in lightning detection	
Annex B (informative) Thunderstorm monitoring techniques	
B.1 General	
B.2 Single sensor detection techniques	
B.2.1 Generalities	
B.2.2 Detector based on electrostatic field	
B.2.3 Detector based on electromagnetic field	
B.3 Multi-sensor location techniques	
B.3.1 Generalities	
B.3.2 Magnetic direction finder (MDF)	
B.3.3 Time of arrival (TOA)	
B.3.4 Interferometry	
Annex C (informative) Recommended preventive actions	
Annex D (informative) Example of TWS evaluation	
	∠J

D.1	Example of TWS evaluation on a wind turbine site	29
D.2	Evaluation of TWS efficiency using LLS	30
Annex E (normative) How to test thunderstorm detectors	32
E.1	General	
E.2	Laboratory tests	
E.2.1	General	32
E.2.2	Resistance to UV radiation tests (for non-metallic sensor housing)	32
E.2.3	Resistance tests to corrosion (for metallic parts of sensor)	33
E.2.4		
E.2.5		
E.2.6		
E.2.7	5	
E.2.8		
E.3	Optional tests on an open air platform under natural lightning conditions	
Annex F (informative) Application guide	
F.1	General	
F.2	Examples of application of a TWS	
F.2.1		
F.2.2		
F.2.3		
	Selection of parameters of TWS	
Bibliograp	hy	43
Ciguro 1	Examples of different target and surrounding areas	15
-	Examples of different target and surrounding areas	15
surroundir	Principles of the coverage area (CA), the monitoring area (MA), the no area (SA) and the target (TA)	
Figure 3 -	Example of an alarm	18
	- Standard lightning classifications	
		23
	I – Lightning activity in the target (TA) in red and surrounding area (SA) in a period of fifteen years (2000-2014)	29
Figure E.1	- Difference in electric field measurement during one thunderstorm event	36
Figure F.1	- Human risk calculated for a crane with LPS at level I	40
Figure F.2	e – Example of the alarms given by a TWS based on an EFS with three	
	Example of the alarms given by a TWS based on an LLS with three	
	adii of the monitoring area	42
	6	
Table 1 –	Parameters related to sensor technologies	13
	Local sensor characteristics	
	Alarms related to LRE	
for a 15-y	 Performance results of a TWS evaluation based on archived lightning data ear period (2000-2014), related to some of the key parameters 	
-	– Example of delivered alarms evaluation	
	 Identification of typical hazardous situations where a TWS improves safety 	
	 Example of effect of settings on alarm performance 	
	Example of eneod of settings on alarm performance	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

THUNDERSTORM WARNING SYSTEMS – PROTECTION AGAINST LIGHTNING

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62793 has been prepared by IEC technical committee 81: Lightning protection.

This second edition cancels and replaces the first edition, published in 2016. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- portable devices are no longer covered by this standard;
- in Clause 5, classes of TWS have been deleted;
- in Clause 6, updated figures and more detailed text are provided to better illustrate the alarm timeline;
- in Clause 9, the text has been summarized and refers now to the application guide given in Annex F;
- annexes have been reorganized;
- Annex E is normative.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
81/640/FDIS	81/641/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

24

INTRODUCTION

Natural atmospheric electric activity and, in particular, cloud-to-ground lightning poses a serious threat to living beings and properties. Every year severe injuries and deaths of humans are caused as a result of direct or indirect lightning strikes.

Lightning:

- may affect sport, cultural and political events attracting large concentrations of people, when in the open field; events may have to be suspended and people evacuated in the case of a risk of a thunderstorm;
- may affect industrial activities by creating power outages and unplanned interruptions of production processes;
- may interrupt all kinds of traffic (people, energy, information, etc.);
- has led to a steady increase in the number of accidents and losses per year due to the wider use of electronic components that are sensitive to the effects of lightning (in industry, transportation and communication);
- may be a hazard for activities with an environmental risk, for example handling of sensitive, inflammable, explosive or chemical products;
- may be a cause of fire.

During the last decades, technical systems including systems devoted to real-time monitoring of natural atmospheric electric activity and lightning, have experienced an extraordinary development. These systems can provide high quality and valuable information in real-time of the thunderstorm occurrence, making it possible to achieve information which can be extremely valuable if coordinated with a detailed plan of action.

Although this information allows the user to adopt anticipated temporary preventive measures, it should be noted that all the measures to be taken based on monitoring information are the responsibility of the system user according to the relevant regulations. The effectiveness will depend to a large extent on the risk involved and the planned decisions to be taken. This document gives an informative list of possible actions (see Annex C).

Lightning and thunderstorms, as many natural phenomena, are subject to statistical uncertainties. It is therefore not possible to achieve precise information on when and where an individual lightning will strike but statistical parameters are defined in this document to help the user in selecting proper measures.

THUNDERSTORM WARNING SYSTEMS – PROTECTION AGAINST LIGHTNING

1 Scone

This document describes the characteristics of thunderstorm warning systems (TWSs) in order to implement lightning hazard preventive measures.

Single sensors and/or a network of sensors (e.g. lightning location system) can be used as a TWS.

This document provides requirements for sensors and networks collecting accurate data of the relevant parameters, giving real-time information on lightning and atmospheric electric activity. It describes the application of the data collected by these sensors and networks in the form of warnings and historical data.

This document includes:

- a general description of available techniques for TWSs;
- guidelines for alarming methods;
- informative examples of possible preventive actions.

The following aspects are outside the scope of this document:

- a) lightning protection systems: such systems are covered by IEC 62305 (all parts) [1]¹;
- b) other thunderstorm related phenomena such as rain, hail, wind;
- c) satellite and radar based thunderstorm detection techniques;
- d) portable devices (a device where the sensor is not fixed).

NOTE It is possible that calibration and testing of portable devices will not be sufficient to provide efficient warning.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62561-4, Lightning protection system components (LPSC) – Part 4: Requirements for conductor fasteners

IEC 62561-1, Lightning protection system components (LPSC) – Part 1: Requirements for connection components

IEC 60068-2-75:2014, Environmental testing – Part 2-75: Tests – Test Eh: Hammer tests

IEC 60529, Degrees of protection provided by enclosures (IP Code)

¹ Numbers in square brackets refer to the bibliography.

IEC 61180, High-voltage test techniques for low voltage equipment – Definitions, test and procedure requirements, test equipment

IEC 61000-6-4, *Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments*

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

alarm

information indicating that a defined area is likely to be affected by thunderstorms and the accompanying lightning related events (LREs)

3.1.2 cloud-to-ground lightning

CG

electric discharge of atmospheric origin that is comprised of one or more cloud-to-ground lightning strokes that propagate from cloud to ground or vice versa and lead to a net transfer of charge between cloud and ground

3.1.3 coverage area CA

area where a given warning equipment has a sufficient detection efficiency (DE) and/or accuracy to give a warning

3.1.4 detection efficiency

DE

percentage of lightning discharges that is detected by a sensor or a network

3.1.5 effective alarm

EA

alarm where a lightning related event (LRE) occurs in the surrounding area (SA) during the total alarm duration (TAD)

Note 1 to entry: An effective alarm can only be assessed when LREs are monitored. When LREs are not monitored the lightning related conditions (LRC) may define a valid alarm, see Figure 3 a).

3.1.6 effective alarm ratio EAR

number of effective alarms (EAs) with respect to the total number of alarms (TNA)