

Edition 1.0 2020-11

TECHNICAL SPECIFICATION

Measurement of internal electric field in insulating materials – Pressure wave propagation method

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20

Tel.: +41 22 919 02 11 info@iec.ch

www.iec.ch

Switzerland

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

Edition 1.0 2020-11

TECHNICAL SPECIFICATION

Measurement of internal electric field in insulating materials – Pressure wave propagation method

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 17.220.99; 29.035.01

ISBN 978-2-8322-8993-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREW	ORD	4
INTROD	UCTION	6
1 Scc	pe	7
2 Nor	mative references	7
3 Ter	ms, definitions and abbreviated terms	7
3.1	Terms and definitions	7
3.2	Abbreviated terms	7
4 Prir	nciple of the method	8
5 Sar	nples	10
6 Ele	ctrode materials	10
7 Pre	ssure pulse wave generation	10
8 Set	-up of the measurement	11
	ibrating the electric field	
10 Mea	asurement procedure	12
	a processing for the experimental measurement	
12 Me	asurement examples	14
12.1	Samples	14
12.2	Pressure pulse generation	
12.3	Calibration of sample and signal	
12.4	Testing sample and experimental results	15
	(informative) Preconditional method of the original signal for the PWP	19
A.1	Simple integration limitation	
A.2	Analysis of the resiliency effect and correction procedure	
A.3	Example of the correction procedure on a PE sample	
A.4	Estimation of the correction coefficients	
A.5	MATLAB® code	24
Annex B	(informative) Linearity verification of the measuring system	26
B.1	Linearity verification	26
B.2	Sample conditions	
B.3	Linearity verification procedure	
B.4	Example of linearity verification	26
Figure 1	- Principle of the PWP method	9
	- Measurement set-up for the PWP method	11
Figure 3 on the s	 Sample of circuit to protect the amplifier from damage by a small discharge ample 	11
Figure 4	– Measured current signal under –5,8 kV	14
Figure 5	– First measured current signal (< 1 min)	15
Figure 6	– Measured current signal under –46,4 kV, after 1,5 h under high voltage	15
	Measured current signal without applied voltage, after 1,5 h under high	16
_	- Internal electric field distribution under -5,8 kV	
•	- Internal electric field distribution under -46,4 kV, at the initial state	

ibution under –46,4 kV, after 1,5 h under high 17	
ibution without applied voltage after 1,5 h under	Figure 11 – Internal electric fie
actical and perfect pressure pulses19	
mple free of charge under moderate voltage20	
ginal and corrected reference signals with a e voltage21	
under voltage with space charge calculated22	
ics of the reference signal for the correction23	
red with coefficients graphically obtained and23	
under voltage with space charge calculated with djusted coefficient24	
I from the oscilloscope by the amplifier with27	
by the sample, considering the input impedance27	and the amplification of the am
e measured current peak of the first electrode28	
in the text24	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENT OF INTERNAL ELECTRIC FIELD IN INSULATING MATERIALS – PRESSURE WAVE PROPAGATION METHOD

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62836 has been prepared by IEC technical committee 112: Evaluation and qualification of electrical insulating materials and systems. It is a Technical Specification

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
112/472/DTS	112/499/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

is a preview some safe of the

INTRODUCTION

High voltage insulating cables, especially high voltage DC cables, are subject to charge accumulation and this may lead to electrical breakdown if the electric field produced by the charges exceeds the electrical breakdown threshold. With the trend to multiply power plants, especially green power plants such as wind or solar generators, more cables will be used for connecting these power plants to the grid and share the electric energy between countries. Therefore, the materials for the cables, and even the structure of these cables, when considering electrodes or the junction between cables, need a standardized procedure for testing how the internal electric field can be characterized. The measurement of the internal electric field would give a tool for comparing materials and help to establish thresholds on the internal electric field for high voltage applications in order to limit breakdown risks as much as possible. The pressure wave propagation (PWP) method has been used by many researchers to measure the space charge distribution and the internal electric field distribution in insulators. However, since experimental equipment, with slight differences, is developed independently by researchers throughout the world, it is difficult to compare the measurement results between the different equipment.

The procedure outlined in this Technical Specification provides a reliable point of comparison ut , ject t between different test results carried out by different laboratories in order to avoid interpretation errors. The IEC has established a project team to develop a procedure for the measurement of PWP.

MEASUREMENT OF INTERNAL ELECTRIC FIELD IN INSULATING MATERIALS – PRESSURE WAVE PROPAGATION METHOD

1 Scope

This document provides an efficient and reliable procedure to test the internal electric field in the insulating materials used for high-voltage applications, using the pressure wave propagation (PWP) method. It is suitable for a sample with homogeneous insulating materials and an electric field higher than 1 kV/mm, but it is also dependent on the thickness of the sample and the pressure wave generator.

2 Normative references

There are no normative references in this document.

3 Terms, definitions and abbreviated terms

For the purposes of this document, the following terms, definitions and abbreviated terms apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 Terms and definitions

3.1.1

pressure wave propagation

. PWP

pressure wave that is propagated in a material containing electric charges and measurement of the induced electric signal from electrodes

3.2 Abbreviated terms

CB carbon black

EVA ethylene-vinyl acetate

LDPE low density polyethylene

LIPP laser induced pressure pulse

PE polyethylene

PIPP piezoelectric induced pressure pulse

PMMA poly (methyl methacrylate)

PWP pressure wave propagation

S/N signal to noise ratio