Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for hardness of monolithic ceramics at room temperature (ISO 14705:2016) #### EESTI STANDARDI EESSÕNA #### NATIONAL FOREWORD See Eesti standard EVS-EN ISO 14705:2021 sisaldab Euroopa standardi EN ISO 14705:2021 ingliskeelset teksti. This Estonian standard EVS-EN ISO 14705:2021 consists of the English text of the European standard EN ISO 14705:2021. Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation and Accreditation. Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 20.01.2021. Date of Availability of the European standard is 20.01.2021. Standard on kättesaadav Eesti Standardimis-ja Akrediteerimiskeskusest. The standard is available from the Estonian Centre for Standardisation and Accreditation. Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>. #### ICS 81.060.30 Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardimis- ja Akrediteerimiskeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardimis-ja Akrediteerimiskeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardimis-ja Akrediteerimiskeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation and Accreditation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation and Accreditation. $If you have any questions about copyright, please contact \ Estonian \ Centre for \ Standard is at ion \ and \ Accreditation:$ Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee ### EUROPEAN STANDARD NORME EUROPÉENNE ### **EN ISO 14705** EUROPÄISCHE NORM January 2021 ICS 81.060.30 #### **English Version** ## Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for hardness of monolithic ceramics at room temperature (ISO 14705:2016) Céramiques techniques - Méthode d'essai de dureté des céramiques monolithiques à température ambiante (ISO 14705:2016) Hochleistungskeramik - Härteprüfung von monolithischer Keramik bei Raumtemperatur (ISO 14705:2016) This European Standard was approved by CEN on 20 December 2020. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels #### **European foreword** The text of ISO 14705:2016 has been prepared by Technical Committee ISO/TC 206 "Fine ceramics" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 14705:2021 by Technical Committee CEN/TC 184 "Advanced technical ceramics" the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2021, and conflicting national standards shall be withdrawn at the latest by July 2021. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### **Endorsement notice** The text of ISO 14705:2016 has been approved by CEN as EN ISO 14705:2021 without any modification. | Co | ontents | Page | |-----|---|--------| | For | reword | iv | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Vickers hardness | 2 | | | 4.1 Principle | | | | 4.2 Symbols, abbreviated terms and designations | 2
4 | | | 4.4 Apparatus | | | | 4.5 Test pieces | | | | 4.6 Procedure 4.7 Accuracy and uncertainties | | | | 4.8 Test report | 8 | | 5 | Knoop hardness | 11 | | | 5.1 Principle | | | | 5.3 Significance and use | | | | 5.4 Apparatus | | | | 5.5 Test pieces 5.6 Procedure | | | | 5.7 Accuracy and uncertainty | 15 | | | 5.8 Test report | | | | | | | | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 206, *Fine ceramics*. This third edition cancels and replaces the second edition (ISO 14705:2008), which has been technically revised. # Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for hardness of monolithic ceramics at room temperature #### 1 Scope This document specifies a test method for determining the Vickers and Knoop hardness of monolithic fine ceramics at room temperature. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 4545-1, Metallic materials — Knoop hardness test — Part 1: Test method ISO 4545-2, Metallic materials — Knoop hardness test — Part 2: Verification and calibration of testing machines ISO 4545-4, Metallic materials — Knoop hardness test — Part 4: Table of hardness values ISO 6507-1, Metallic materials — Vickers hardness test — Part 1: Test method ISO 6507-2, Metallic materials — Vickers hardness test — Part 2: Verification and calibration of testing machines #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### Vickers hardness value obtained by dividing the applied force by the surface area of the indentation computed from the mean of the measured diagonals of the indentations, assuming that the indentation is an imprint of the undeformed indenter Note 1 to entry: Vickers hardness may be expressed in two different units: - a) with unit GPa, obtained by dividing the applied force in N by the surface area of the indentation in mm²; - b) Vickers hardness number, obtained by dividing the applied force in kgf by the surface area of the indentation in mm^2 .