INTERNATIONAL STANDARD

ISO 23216

> First edition 2021-05

Carbon based films — Determination of optical properties of amorphous carbon films by spectroscopic ellipsometry

à base a de carbone Films à base de carbone — Détermination des propriétés optiques des

© ISO 2021

rentation, no part of rical, including processed from All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Co	ntents	Page
Fore	eword	iv
Intr	oduction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Test specimen preparation	1
5	Apparatus	2
6	Procedure 6.1 Treatment of specimen before test 6.2 Preparation for test 6.3 Testing conditions for test 6.4 Optical model for analysis 6.5 Number of test repeats	2 2 3
7	Classification of test results	
8	Test report	3
	ex A (normative) Classification method for amorphous carbon films by optical propertiesiography	
	TOUR ORD ORD ORD ORD ORD ORD ORD ORD ORD OR	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 107, Metallic and other inorganic coatings.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document provides a determination method and a classification for optical properties of amorphous carbon films by spectroscopic ellipsometry.

Amorphous carbon films have a structure, containing both sp² and sp³ bonded carbon atoms and in several cases also hydrogen. There are graphite-like, polymer-like, glass-like and diamond-like carbon films. Because of their outstanding mechanical properties, amorphous carbon films are used in various hard coating applications on hard metals, e.g. as protective coatings against wear and corrosion in automotive parts. Biomedical and optical applications on alternative substrate materials such as silicon and glass have become more and more important. Currently, amorphous carbon films are classified into several types with regard to their chemical structures, and each type is selectively used according to its appropriate application. For an easy classification of amorphous carbon films, an optically quantified phase fingerprint with high accuracy is provided as a result of an international interlaboratory comparison.

The optical properties of refractive index n and extinction coefficient k determined by spectroscopic ellipsometry are the key quantities for the proposed classification of amorphous carbon films. The interlaboratory comparison demonstrated that a classification within the n-k plane is feasible for all types of amorphous carbon films. This will be beneficial for the identification of the coating type on alternative substrate materials (such as silicon and glass) and additional industrial applications. Spectroscopic ellipsometry as a fast and non-destructive analytical method can also be applied to quality control and development in industrial applications, given that smooth and well-defined substrate materials are used and appropriate modelling is applied.

This document is intended to implement recommended ellipsometric test conditions and the n-k plane classification scheme of amorphous carbon films on silicon wafers.

This document is useful for the complementary optical property classification and quality control of amorphous carbon films.

As amorphous carbon films show a huge diversity of structure and properties, it is crucial to select the appropriate type of amorphous carbon film to exploit their excellent properties in practical use. Therefore, carbon films are characterized by spectroscopic ellipsometry under reasonable conditions. This enables the classification of amorphous carbon films on silicon wafers within the *n-k* plane acting as a process fingerprint.

This document is a preview general ded by tills

Carbon based films — Determination of optical properties of amorphous carbon films by spectroscopic ellipsometry

1 Scope

This document specifies spectroscopic ellipsometry for the determination of optical properties (refractive index n and extinction coefficient k) and the optical classification of different types of amorphous carbon films within the n-k plane.

It is applicable to amorphous carbon films deposited by ionized evaporation, sputtering, arc deposition, plasma-assisted chemical vapour deposition, hot filament techniques and others.

It does not apply to carbon films modified with metals or silicon, amorphous carbon films that have a gradient of composition/property in the thickness, paints and varnishes.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

refractive index

n

ratio of the velocity of propagation of electromagnetic radiation in a vacuum to the velocity of propagation of electromagnetic radiation in a medium

3.2

extinction coefficient

k

amount of absorption of electromagnetic radiation in a medium (substance)

4 Test specimen preparation

Amorphous carbon films on various substrates can be tested if the substrates are optically isotropic and optical models are available for them. The recommended test substrate is a Si wafer with a mirror surface. It can be used as substrates of the amorphous carbon films for testing depending on the requirements. Specimens shall be homogeneous amorphous carbon films. The thickness of the amorphous carbon films shall be 0,02 μm to 5 μm .

Any pertinent details of the specimens such as their dimensions, surface finish, material type, composition, microstructure and processing treatments shall be supplied.