TECHNICAL SPECIFICATION

First edition 2021-05

Geographic information — BIM to GIS conceptual mapping (B2GM)

Information géographique — Cartographique conceptuelle de BIM à

Reference number ISO/TS 19166:2021(E)

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Fore	eword	iv
Intro	oduction	v
1	Scope	
2	Normative references	
3	Terms and definitions	2
4	Abbreviated terms and notation4.1Abbreviated terms4.2UML Notation	
5	Conformance	5
6	Conceptual Framework for BIM to GIS mapping6.1General6.2Conceptual overview6.3Mechanisms	
7	BIM to GIS perspective definition 7.1 General 7.2 Mechanisms 7.2.1 Data view 7.2.2 Logic view 7.2.3 Style view	9 9 9 10 10
8	BIM to GIS element mapping 8.1 General 8.2 Mechanism	
9	BIM to GIS LOD Mapping 9.1 General 9.2 Mechanism	
Anno	nex A (normative) Abstract test suite	
Anno	nex B (informative) B2G EM and LM example	
Anne	nex C (informative) Instance example using B2G PD	
Anne	nex D (informative) CityGML LOD model and mapping	
Anne	nex E (informative) LOD mapping rule description example	
	liography	
		25

ISO/TS 19166:2021(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 211, *Geographic information/Geomatics*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Building Information Modelling (BIM) contains rich information related to building elements such as doors, walls, windows, MEP (mechanical, electrical, and plumbing) and others. In addition, BIM models may include information about other features than buildings, which are relevant to GIS. From the viewpoint of GIS, there are many benefits related to using BIM information in GIS applications. Some examples are:

- a) Indoor service implementation such as emergency management (routing, evacuation path finding under fire situation).
- b) Outdoor indoor linkage service, such as seamless navigation.
- c) Effective facility/energy/environment management considering objects related BIM based on GIS.

Although there have been some attempts to harvest the rich information contained in BIM models and use it in GIS, there is no established way to map the information elements between the two modelling worlds. A proper mapping method is clearly required. Before the implementation of the information mapping, however, mapping mechanisms for linking appropriate information elements from BIM to GIS need to be clearly defined. In addition, for the mapping mechanisms to work together, a conceptual framework for the mapping process based on open standards between BIM and GIS needs to be established.

This document provides the conceptual framework for BIM to GIS information mapping and required mapping mechanisms.

A brief explanation of each mapping mechanism follows:

- BIM to GIS Perspective Definition (B2G PD): supports perspective information representation depending on the specific requirement such as the urban facility management (UFM). "Perspective" depends on the use-case. For example, to manage the urban facilities, the required data should be collected from the various data sources, including BIM model, and transformed to represent in user-specific perspective. PD defines a Data View to extract the data required and transform the information from the various data sources.
- BIM to GIS Element Mapping (B2G EM): supports the element mapping from BIM model to GIS model. As the BIM and GIS model schemas are different, B2G EM requires a mapping rule specifying how to transform from a BIM model to GIS model element.
- BIM to GIS LOD Mapping (B2G LM): supports the LOD mapping from BIM model to GIS model. LOD (levels of detail) in GIS is a deliberate choice of data included/excluded from a model to satisfy certain use cases including visualization. The relevant geometric and other information for the LODs required in the target GIS model need to be extracted/or queried from the BIM model. This can be defined by the LOD mapping ruleset.

This document is applicable to information query services such as urban facility management operation. BIM object visualization in GIS and other application services that require query processing depending on the relationship between BIM and GIS objects, either in the real or virtual world, will be able to use the mechanisms defined in this document for mapping the required information elements between the two systems. Although this document describes mapping information elements from BIM to GIS in general, the primary concern of this document is mapping BIM models to GIS models for visualization.

The conceptual mapping mechanism defined in this document uses existing international standards such as Geography Markup Language (GML) (ISO 19136-1) and Industry Foundation Classes (IFC) (ISO 16739-1). The Open Geospatial Consortium (OGC)'s Land and Infrastructure Conceptual Model Standard (LandInfra) (OGC 15-111r1) defines the information model of infrastructure such as roads. As LandInfra has been designed with a common conceptual model between the BIM and GIS communities, transferring information from LandInfra BIM models to LandInfra GIS models should be reasonably straight forward. This document, therefore, concentrates on mapping from BIM models not based on LandInfra.

this document is a preview demendence of the document is a preview demendence of the document of the document

Geographic information — BIM to GIS conceptual mapping (B2GM)

1 Scope

This document defines the conceptual framework and mechanisms for mapping information elements from Building Information Modelling (BIM) to Geographic Information Systems (GIS) to access the required information based on specific user requirements.

The conceptual framework for mapping BIM information to GIS is defined with the following three mapping mechanisms:

- BIM to GIS Perspective Definition (B2G PD);
- BIM to GIS Element Mapping (B2G EM);
- BIM to GIS LOD Mapping (B2G LM).

This document does not describe physical schema integration or mapping between BIM and GIS models because the physical schema integration or mapping between two heterogeneous models is very complex and can cause a variety of ambiguity problems. Developing a unified information model between BIM and GIS is a desirable goal, but it is out of the scope of this document.

The scope of this document includes the following:

- definition for BIM to GIS conceptual mapping requirement description;
- definition of BIM to GIS conceptual mapping framework and component;
- definition of mapping for export from one schema into another.

The following concepts are outside the scope:

- definition of any particular mapping application requirement and mechanism;
- bi-directional mapping method between BIM and GIS;
- definition of physical schema mapping between BIM and GIS;
- definition of coordinate system mapping between BIM and GIS.

NOTE For cases involving requirements related to Geo-referencing for providing the position and orientation of the BIM model based on GIS, there exist other standards such as ISO 19111 and the Information Delivery Manual (IDM) from buildingSMART on Geo-referencing BIM.

- definition of relationship mapping between BIM and GIS;
- implementation of the application schema.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 19103, Geographic information — Conceptual schema language

ISO 19107, Geographic information — Spatial schema

ISO 19109, Geographic information — Rules for application schema

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

application

manipulation and processing of data in support of user requirements

[SOURCE: ISO 19101-1:2014, 4.1.1]

3.2

application schema

conceptual schema for data required by one or more applications (3.1)

[SOURCE: ISO 19101-1:2014, 4.1.2]

3.3

class

<UML> description of a set of *objects* (<u>3.9</u>) that share the same attributes, operations, methods, relationships and semantics

[SOURCE: ISO 19103:2015, 4.7, modified — <UML> domain has been added to the entry.]

3.4

complex feature

feature (<u>3.6</u>) composed of other features

[SOURCE: ISO 19109:2015, 4.3]

3.5

element

<BIM> component including geometry, property, method, and relationship in a BIM or GIS model (3.8).

EXAMPLE In BIM, site, building, wall, door, and room are examples of elements, whereas in a GIS, site, building, wall, room with infrastructure such as road, and bridge are examples of elements.

3.6

feature

abstraction of real-world phenomena

Note 1 to entry: A feature composed of other features is called a "complex feature" (3.4).

[SOURCE: ISO 19101-1:2014, 4.1.11, modified — Note 1 to entry modified.]

62 172 (*