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European Foreword

This document (CEN/CLC/TR 17603-31-08:2021) has been prepared by Technical Committee
CEN/CLC/JTC 5 “Space”, the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data
or descriptions and guidelines about how to organize and perform the work in support of EN 16603-
31.

This Technical report (TR 17603-31-08:2021) originates from ECSS-E-HB-31-01 Part 8A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and
the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence
over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).
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1
Scope

Heat pipes are a solution to many thermal dissipation problems encountered in space systems.

The types of heat pipes that can be used in spacecrafts are described. Details on design and
construction, usability, compatibility and the limitations of each type are given.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01
TR 17603-31-02
TR 17603-31-03
TR 17603-31-04
TR 17603-31-05

TR 17603-31-06
TR 17603-31-07
TR 17603-31-08
TR 17603-31-09
TR 17603-31-10
TR 17603-31-11
TR 17603-31-12
TR 17603-31-13
TR 17603-31-14
TR 17603-31-15
TR 17603-31-16

Thermal design handbook — Part 1: View factors

Thermal design handbook — Part 2: Holes, Grooves and Cavities
Thermal design handbook — Part 3: Spacecraft Surface Temperature
Thermal design handbook — Part 4: Conductive Heat Transfer

Thermal design handbook — Part 5: Structural Materials: Metallic and
Composite

Thermal design handbook — Part 6: Thermal Control Surfaces
Thermal design handbook — Part 7: Insulations

Thermal design handbook — Part 8: Heat Pipes

Thermal design handbook - Part 9: Radiators

Thermal design handbook — Part 10: Phase — Change Capacitors
Thermal design handbook — Part 11: Electrical Heating

Thermal design handbook — Part 12: Louvers

Thermal design handbook — Part 13: Fluid Loops

Thermal design handbook — Part 14: Cryogenic Cooling
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