TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

CEN/CLC/TR 17603-31-03

August 2021

ICS 49.140

English version

Space Engineering - Thermal design handbook - Part 3: Spacecraft Surface Temperature

Ingénierie spatiale - Manuel de conception thermique -Partie 3 : Température de surface des véhicules spatiaux

Raumfahrttechnik - Handbuch für thermisches Design -Teil 3: von Oberflächen auf Raumfahrzeugen

This Technical Report was approved by CEN on 14 June 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

3.

Table of contents

Europe	an Fore	eword10)
1 Scop	e		i
2 Refer	ences		2
3 Term	s, defini	itions and symbols13	3
3.1	Terms a	nd definitions	3
3.2	Symbols	5	3
4 Solar	radiatio	on15	5
4.1			
4.2	Infinitely	conductive planar surfaces)
	4.2.1	Flat plate emitting on one or both sides	
4.3	Infinitely	conductive spherical surfaces	1
	4.3.1	Sphere	1
4.4	Infinitely	conductive cylindrical surfaces	2
	4.4.1	Two-dimensional circular cylinder	2
	4.4.2	Three-dimensional circular cylinder	3
4.5	Infinitely	conductive conical surfaces	5
	4.5.1	Semi-infinite circular cone	5
	4.5.2	Finite circular cone with insulated base. (axial configuration)27	7
	4.5.3	Finite height circular cone	
4.6	Infinitely	conductive cylindrical-conical surfaces	ł
	4.6.1	Cone-cylinder-cone	
4.7	Infinitely	conductive prismatic surfaces)
	4.7.1	Prism with an n-sided regular polygonal section49	
4.8	Infinitely	conductive pyramidal surfaces)
	4.8.1	Pyramid with an n-sided regular polygonal section60)
4.9	Infinitely	conductive prismatic-pyramidal surfaces)
	4.9.1.1	Pyramid-prism-pyramid with an n-sided regular polygonal70)
4.10	Thin-wal	led spherical bodies. Finite conductivity80)
	4.10.1	Non-spinning sphere80)

	4.10.2	Non-spinning sphere. Including internal radiation	82
4 11		lled cylindrical bodies. Finite conductivity.	
	4.11.1	Non-spinning two-dimensional circular cylinder	
	4.11.2	Spinning two-dimensional circular cylinder	
5	4.11.3	Circular cylinder. solar radiation parallel to axis of symmetry	
	4.11.4	Cylindrical surface of rectangular cross section. Solar radiation	
		normal to face	90
4.12	Thin-wa	lled conical bodies. Conductivity	95
	4.12.1	Non-spinning cone	95
5 Plane	etary rac	liation	99
5.1	General	3	
5.2	Infinitely	conductive planar surfaces	104
	5.2.1	Flat plate absorbing and emitting on one side	104
5.3	Infinitely	conductive spherical surfaces	105
	5.3.1	Sphere	105
	5.3.2	Hemispherical surface absorbing and emitting on outer face	106
5.4	Infinitely	conductive cylindrical surfaces	108
	5.4.1	Circular cylinder with insulated bases	108
	5.4.2	Finite height circular cylinder	109
5.5	Infinitely	conductive conical surfaces	119
	5.5.1	Circular cone with insulated base	119
	5.5.2	Finite height circular cone	122
6 Albeo	do radia	tion	125
6.1	General	<u> </u>	125
6.2	Infinitely	conductive planar surfaces	
	6.2.1	Flat plate absorbing and emitting on one side	130
6.3	Infinitely	conductive spherical surfaces	
	6.3.1	Sphere	135
6.4	Infinitely	conductive cylindrical surfaces	139
	6.4.1	Circular cylinder with insulated bases	139
Bibliog	iraphy	<u> </u>	144
Figure	S		1
-	-1: The f	unction $T_R(A_E/A_I)^{1/4}$ vs. the distance to the Sun. Calculated by the iller.	
<u> </u>			

Figure 4-2:	The function	$T_R(A_E/A_I)^{1/4}$ vs. the	e optical	characteristic	s of the surface.	
-	Shaded zone	of <i>a</i> is enlarged	in <i>b</i> . Cal	culated by the	compiler	17

Figure 4-3:	Temperature T_R as a function of α_s / ε and A_l/A_E for d = 1 AU. Shaded zone of <i>a</i> is enlarged in <i>b</i> . Calculated by the compiler.	.18
Figure 4-4:	Ration $(A_l/A_E)^{1/4}$ as a function of γ , in the case of a flat plate. Calculated by the compiler.	20
Figure 4-5:	Ratio $(A_I/A_E)^{1/4}$ as a function of γ and H/R , in the case of a finite height circular cylinder. Calculated by the compiler	.24
Figure 4-6:	Ratio $(A_I/A_E)^{1/4}$ as a function of δ , in the case of a semi-infinite circular cone. Calculated by the compiler.	.26
Figure 4-7:	Ratio $(A_I/A_E)^{1/4}$ as a function of δ , in the case of a finite circular cone with insulated base (axial configuration). Calculated by the compiler	.28
Figure 4-8:	Ratio $(A_I/A_E)^{1/4}$ as a function of γ and δ , in the case of a finite height cone. Calculated by the compiler.	.30
Figure 4-9:	Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	.32
Figure 4-10): Ratio $(A_{\rm l}/A_{\rm E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.33
Figure 4-12	I: Ratio $(A_{\rm I}/A_{\rm E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.34
Figure 4-12	2: Ratio $(A_{I}/A_{E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.35
Figure 4-13	B: Ratio $(A_{I}/A_{E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.36
Figure 4-14	4: Ratio $(A_{\rm l}/A_{\rm E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.37
Figure 4-18	5: Ratio $(A_{I}/A_{E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.38
Figure 4-16	S: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.39
Figure 4-17	7: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.40
Figure 4-18	B: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.41
Figure 4-19	9: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.42
Figure 4-20): Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder- cone. Calculated by the compiler.	.43
Figure 4-2 ²	I: Ratio $(A_l/A_E)^{1/4}$ as a function of γ for any value of H/R , in the case of a cone-cylinder-cone. Calculated by the compiler.	.44
Figure 4-22	2: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and H/R , in the case of a cone-cylinder- cone. Calculated by the compiler.	.45
Figure 4-23	B: Ratio $(A_I/A_E)^{1/4}$ as a function of γ and H/R , in the case of a cone-cylinder- cone. Calculated by the compiler.	.46

Figure 4-50): Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	<i>.</i> 5
Figure 4-51	1: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le$ 1 are also plotted in the previous figure. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler	6
Figure 4-52	2: Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler	7
Figure 4-53	B: Ratio $(A_{I}/A_{E})^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le$ 1 are also plotted in the previous figure. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler	8
Figure 4-54	A: Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler	'9
Figure 4-55	5: Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler	0
Figure 4-56	6: Temperature distribution on sphere. No spin. No internal radiation. Calculated by the compiler	1
Figure 4-57	7: Temperature distribution on sphere including internal radiation. No spin. Calculated by the compiler8	3
Figure 4-58	3: Temperature distribution on a two-dimensional cylinder. No spin. No internal radiation. Calculated by the compiler8	5
Figure 4-59	9: Temperature distribution on a two - dimensional spinning cylinder for several μ an γ values. No internal radiation. Calculated by the compiler	7
Figure 4-60): Temperature distribution on a two - dimensional spinning cylinder for several μ an γ values. No internal radiation. Calculated by the compiler	8
Figure 4-61	I: Temperature distribution on cylinder. No spin. No internal radiation. From Nichols (1961) [11]9	0
Figure 4-62	2: Temperature distribution on a cylindrical surface whose cross section is a rectangle of aspect - ratio λ = 0,5. No internal radiation. Calculated by the compiler	2
Figure 4-63	B: Temperature distribution on a cylindrical surface whose cross section is a rectangle on aspect - ration $\lambda = 1$. No internal radiation. Calculated by the compiler9	3
Figure 4-64	4: Temperature distribution on a cylindrical surface whose cross section is a rectangle on aspect - ration λ = 2. No internal radiation. Calculated by the compiler	4

Figure 4-65: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11].	96
Figure 4-66: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11].	97
Figure 4-67: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11].	98
Figure 5-1: The ratio T_{RP}/T_P vs. the optical characteristics of the surface for different values of F_{SP} . Shaded zone of <i>a</i> is enlarged in <i>b</i> . Calculated by the compiler.	.101
Figure 5-2: Radiation equilibrium temperature T_{RP} vs. ratio T_{RP}/T_P . Incoming radiation from different planets. After NASA - SP - 3051 (1965)	.102
Figure 5-3: Different estimates of radiation equilibrium temperature T_{RP} vs. T_{RP}/T_P , for radiation from the Earth. Plotted from data by Johnson (1965) [9]	.103
Figure 5-4: F_{SP} as a function of λ and h / R_P in the case of a flat plate absorbing and emitting on one side. Calculated by the compiler	.105
Figure 5-5: F_{SP} as a function of h / R_P in the case of a sphere. Calculated by the compiler.	.106
Figure 5-6: F_{SP} as a function of λ and h / R_P in the case of a hemispherical surface absorbing and emitting on outer face. Calculated by the compiler	.107
Figure 5-7: F_{SP} as a function of λ and h / R_P in the case of a circular cylinder with insulated bases. Calculated by the compiler	.109
Figure 5-8: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.110
Figure 5-9: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.111
Figure 5-10: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.112
Figure 5-11: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.113
Figure 5-12: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.114
Figure 5-13: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.115
Figure 5-14: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.116
Figure 5-15: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.117
Figure 5-16: F_{SP} as a function of λ and h / R_P in the case of a finite height circular cylinder. Calculated by the compiler.	.118
Figure 5-17: F_{SP} as a function of λ and h / R_P in the case of a circular cone with insulated base. Calculated by the compiler.	.120
Figure 5-18: F_{SP} as a function of λ and h / R_P in the case of a circular cone with insulated base. Calculated by the compiler.	

Figure 5-19: F_{SP} as a function of λ in the case of a finite height circular cone. Calculated by the compiler.	.123
Figure 5-20: F_{SP} as a function of λ in the case of a finite height circular cone. Calculated by the compiler	.124
Figure 6-1: The ratio T_{RA}/T_A vs. the optical characteristics of the surface for different values of <i>F</i> . Shaded zone of <i>a</i> is enlarged in <i>b</i> . Calculated by the compiler	.126
Figure 6-2: Albedo equilibrium temperature, T_{RA} , vs. dimensionless ratio T_{RA}/T_A . Incoming albedo from different planets. After Anderson (1969) [1].	.127
Figure 6-3: Different estimates of albedo equilibrium temperature T_{RA} , vs. T_{RA}/T_A in case of the Earth. Calculated by the compiler.	.128
Figure 6-4: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_s in the case of a flat plate ($\lambda = 0^\circ$, $\phi_c = 180^\circ$). From Bannister (1965) [2].	.131
Figure 6-5: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a flat plate ($\lambda = 30^\circ$, $\phi_c = 0^\circ$). From Bannister (1965) [2]	.132
Figure 6-6: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a flat plate ($\lambda = 30^\circ$, $\phi_c = 90^\circ$). From Bannister (1965) [2].	.133
Figure 6-7: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a flat plate ($\lambda = 30^\circ$, $\phi_c = 180^\circ$). From Bannister (1965) [2]	.134
Figure 6-8: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a sphere. From Cunningham (1961) [6]	.136
Figure 6-9: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a sphere. From Cunningham (1961) [6]	.137
Figure 6-10: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a sphere. Calculated by the compiler.	.138
Figure 6-11: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a cylinder ($\lambda = 0^\circ$, $\phi_c = 0^\circ$, 180°). From Bannister (1965) [2]	.140
Figure 6-12: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a cylinder ($\lambda = 60^\circ$, $\phi_c = 0^\circ$). From Bannister (1965) [2]	.141
Figure 6-13: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a cylinder ($\lambda = 60^\circ$, $\phi_c = 90^\circ$). From Bannister (1965) [2].	.142
Figure 6-14: Albedo view factor <i>F</i> vs. h / R_P for different values of θ_S in the case of a cylinder ($\lambda = 60^\circ$, $\phi_c = 180^\circ$). From Bannister (1965) [2]	.143

Tables

	.0
Tables	
Table 5-1: Relevant data on the Planets and the Moon	
Table 6-1: Relevant data on the Planets and the Moon	
	5

European Foreword

This document (CEN/CLC/TR 17603-31-03:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-31.

This Technical report (TR 17603-31-03:2021) originates from ECSS-E-HB-31-01 Part 3A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

er domain ot approx.

1 Scope

Factors affecting the equilibrium temperature of a spacecraft surface are described in this Part 3 using simple geometrical configurations and basic assumptions.

Methods for conducting calculations on the affect of Solar, planetary and albedo radiation are given taking into consideration the internal and immediate environmental factors and incorporating the various configurations and dimensions of the constituent parts.

The Thermal design handbook is published in 16 Parts

17:5

TR 17603-31-01	Thermal design handbook – Part 1: View factors
TR 17603-31-02	Thermal design handbook – Part 2: Holes, Grooves and Cavities
TR 17603-31-03	Thermal design handbook – Part 3: Spacecraft Surface Temperature
TR 17603-31-04	Thermal design handbook – Part 4: Conductive Heat Transfer
TR 17603-31-05	Thermal design handbook – Part 5: Structural Materials: Metallic and Composite
TR 17603-31-06	Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07	Thermal design handbook – Part 7: Insulations
TR 17603-31-08	Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09	Thermal design handbook – Part 9: Radiators
TR 17603-31-10	Thermal design handbook – Part 10: Phase – Change Capacitors
TR 17603-31-11	Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12	Thermal design handbook – Part 12: Louvers
TR 17603-31-13	Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14	Thermal design handbook – Part 14: Cryogenic Cooling
TR 17603-31-15	Thermal design handbook – Part 15: Existing Satellites
TR 17603-31-16	Thermal design handbook – Part 16: Thermal Protection System

17:500

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS System - Glossary of terms

All other references made to publications in this Part are listed, alphabetically, in the **Bibliography**.