MADALPINGELISED ELEKTRIPAIGALDISED. OSA 8-2: TOOTEVTARBIJATE MADALPINGELISED ELEKTRIPAIGALDISED Low-voltage electrical installations - Part 8-2: Prosumer's low-voltage electrical installations (IEC 60364-8-2:2018) #### EESTI STANDARDI EESSÕNA #### NATIONAL FOREWORD | See Eesti standard EVS-HD 60364-8-2:2019 +A11+A12:2021 sisaldab Euroopa standardi HD 60364-8-2:2019 ja selle muudatuste A11:2019 ja A12:2021 ingliskeelset teksti. | This Estonian standard EVS-HD 60364-8-2:2019 +A11+A12:2021 consists of the English text of the European standard HD 60364-8-2:2019 and its amendments A11:2019 and A12:2021 | |---|---| | Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation and Accreditation. | | Euroopa standardimisorganisatsioonid on teinud
Euroopa standardi rahvuslikele liikmetele
kättesaadavaks 23.11.2018, muudatused A11
02.08.2019 ja A12 03.09.2021. | Date of Availability of the European standard is 23.11.2018, for A11 02.08.2019 and A12 03.09.2021. | | Sellesse standardisse on muudatus A11 sisse viidud ja tehtud muudatused tähistatud püstkriipsuga lehe välisveerisel. | The amendment A11 has been incorporated into this standard and changes have been marked by a vertical line on the outer row of the page. | | Muudatusega A12 lisatud või muudetud teksti algus ja lõpp on tekstis tähistatud sümbolitega | The start and finish of text introduced or altered by amendment A12 is indicated in the text by tags A_{12} A_{12} . | | Standard on kättesaadav Eesti Standardimis-ja
Akrediteerimiskeskusest. | The standard is available from the Estonian Centre for Standardisation and Accreditation. | Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>. ICS 91.140.50 #### Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardimis- ja Akrediteerimiskeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardimis- ja Akrediteerimiskeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autoriõiguse kaitse kohta, võtke palun ühendust Eesti Standardimis- ja Akrediteerimiskeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee #### The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation and Accreditation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation and Accreditation. If you have any questions about standards copyright protection, please contact the Estonian Centre for Standardisation and Accreditation: Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee # HARMONIZATION DOCUMENT DOCUMENT D'HARMONISATION HARMONISIERUNGSDOKUMENT HD 60364-8-2 + A11 + A12 November 2018, August 2019, September 2021 ICS 91.140.50 #### **English Version** ## Low-voltage electrical installations - Part 8-2: Prosumer's lowvoltage electrical installations (IEC 60364-8-2:2018) Installations électriques à basse tension - Partie 8-2: Installations électriques à basse tension du prosommateur (IEC 60364-8-2:2018) Errichten von Niederspannungsanlagen - Teil 8-2: Kombinierte Erzeugungs-/Verbrauchsanlagen (IEC 60364-8-2:2018) This Harmonization Document was approved by CENELEC on 2018-11-14. Amendment A11 was approved by CENELEC on 2018-09-13. Amendment A12 was approved by CENELEC on 2021-07-07. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for implementation of this Harmonization Document and its amendments at national level. Up-to-date lists and bibliographical references concerning such national implementations may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This Harmonization Document and its Amendments A11 and A121 exist in three official versions (English, French, German). CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels #### **European foreword** The text of document 64/2298/FDIS, future edition 1 of IEC 60364-8-2, prepared by IEC/TC 64 "Electrical installations and protection against electric shock" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as HD 60364-8-2:2018. The following dates are fixed: - latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2021-11-14 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 60364-8-2:2018 was approved by CENELEC as a European Standard without any modification. #### HD 60364-8-2:2018/A11:2019 European foreword This document (HD 60364-8-2:2018/A11:2019) has been prepared by CLC/TC 64 "Electrical installations and protection against electric shock". The following dates are fixed: - latest date by which this document has to be implemented at national (dop) 2020-02-02 level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with this document have to be withdrawn (dow) 2022-08-02 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. ## Analy Amendment A12 European foreword This document (HD 60364-8-2:2018/A12:2021) has been prepared by CLC/TC 64 "Electrical installations and protection against electric shock". The following dates are fixed: - latest date by which this document has to (dop) 2022-07-07 be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national (dow) 2024-07-07 standards conflicting with this document have to be withdrawn Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. ant show and on the C Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website. (A12) Edition 1.0 2018-10 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Low-voltage electrical installations – Part 8-2: Prosumer's low-voltage electrical installations Installations électriques à basse tension – Partie 8-2: Installations électriques à basse tension du prosommateur # THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad #### IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing 21 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary 67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. #### A propos de l'IEC La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. #### A propos des publications IEC Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. #### Catalogue IEC - webstore.iec.ch/catalogue Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad. ## Recherche de publications IEC - #### webstore.iec.ch/advsearchform La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées. #### IEC Just Published - webstore.iec.ch/justpublished Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email. #### Electropedia - www.electropedia.org Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 21 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne. #### Glossaire IEC - std.iec.ch/glossary 67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC. #### Service Clients - webstore.iec.ch/csc Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch. Edition 1.0 2018-10 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Low-voltage electrical installations – Part 8-2: Prosumer's low-voltage electrical installations Installations électriques à basse tension – Partie 8-2: Installations électriques à basse tension du prosommateur INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ISBN 978-2-8322-6074-6 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. This document is a preview denoted by Files ## CONTENTS | Г | JKEWU | KD | | |----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | IN | INTRODUCTION7 | | | | 1 | | e | | | 2 | | native references | | | 3 | | s and definitions | | | | | | | | 4 | | action of smart grid and PEI | | | | 4.1 | Main objectives | | | | 4.2 | Safety | | | | 4.3 | Proper functioning | | | _ | 4.4 | Implementation of PEI | | | 5 | | concept | | | 6 | | s of PEIs | | | | 6.1 | General | | | | 6.2 | Operating modes | | | | 6.3 | Individual PEI | | | | 6.4 | Collective PEI | 14 | | | 6.5 | Shared PEI | | | 7 | Elect | rical energy management system (EEMS) | | | | 7.1 | General | | | | 7.2 | Architecture of EEMS | 20 | | 8 | Tech | nical issues | | | | 8.1 | Safety issues | | | | 8.1.1 | 9 | | | | 8.1.2 | | | | | 8.1.3 | J 1 | | | | 8.1.4 | 5 | | | | 8.2 | Interaction with the public network | | | | 8.3 | Energy storage | | | | 8.4 | Design for flexibility of load and generators (demand/response) | | | | 8.5 | Electric vehicle charging | | | | 8.6 | Selectivity between current protective devices | | | | | (informative) Objectives and concept of PEI | | | Α | nnex B (| (informative) Operating modes | | | | B.1 | Operating modes for individual PEI | | | | B.1.1 | g | | | | B.1.2 | | | | | B.1.3 | J. Company of the com | | | | B.2 | Operating modes for collective PEI | | | | B.2.1 | 3 | | | | B.2.2 | | | | | B.2.3 | <u> </u> | | | | B.3 | Operating modes for shared PEI | | | | B.3.1 | š | | | | B.3.2 | | | | | B.3.3 | Reverse feeding mode | 41 | | Annex C (informative) Interaction with the public network | 43 | |---------------------------------------------------------------------------------------------------------------------------------------|-----| | C.1 General | 43 | | C.2 National grid codes compliance with active and reactive power control | 43 | | C.3 Voltage control | 43 | | C.4 Frequency control | 43 | | C.5 Load shedding programme | 43 | | Annex D (informative) Architecture of PEI | 44 | | D.1 Architecture of individual PEI | 44 | | D.2 Architecture of collective PEI | | | D.3 Architecture of shared PEI | | | Annex E (informative) List of notes concerning certain countries | 47 | | Annex ZA (normative) Normative references to international publications with their corresponding European publications | 48 | | Annex ZB (normative) Special National Conditions | 49 | | Annex ZC (informative) A-deviations (A12) | 51 | | Bibliography | 52 | | 10 | | | Figure 1 – Example of prosumer's low-voltage electrical installation | 12 | | Figure 2 – Example of electrical design of individual PEI | | | Figure 3 – Example of electrical design of collective PEI using DSO distribution system | | | Figure 4 – Example of electrical design of collective PEI with distribution system within PEI | | | Figure 5 – Example of electrical design of collective PEI with distribution system within | . 1 | | PEI in parallel with DSO distribution system | | | Figure 6 – Example of electrical design of shared PEI using DSO distribution system | 17 | | Figure 7 – Example of electrical design of shared PEI with distribution system within PEI | 18 | | Figure 8 – Example of electrical design of shared PEI with distribution system within PEI in parallel with DSO distribution system | 19 | | Figure 9 – Connection to the local earthing arrangement (TN, TT and IT system) | 23 | | Figure 10 – Estimation of the minimum earth fault current according to the operating mode (connected and island) | 24 | | Figure 11 – Example of double short-circuit protection for the same circuit | 26 | | Figure 12 – Example of selectivity with various power supplies | 28 | | Figure B.1 – Example of electrical design of individual PEI operating in direct feeding mode | | | Figure B.2 – Example of electrical design of individual PEI operating in island mode | | | Figure B.3 – Example of electrical design of individual PEI operating in reverse feeding mode | 32 | | Figure B.4 – Example of electrical design of collective PEI operating in direct feeding mode with one single electrical installation | 33 | | Figure B.5 – Example of electrical design of collective PEI operating in direct feeding mode with several electrical installations | 34 | | Figure B.6 – Example of electrical design of collective PEI operating in island mode with one single electrical installation | 35 | | Figure B.7 – Example of electrical design of collective PEI operating in island mode with several electrical installations | 35 | | Figure B.8 – Example of electrical design of collective PEI operating in reverse feeding mode with one single electrical installation | 36 | | Figure B.9 – Example of electrical design of collective PEI operating in reverse feeding mode with several electrical installations | 37 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | Figure B.10 – Example of electrical design of shared PEI operating in direct feeding mode with one single electrical installation | 38 | | Figure B.11 – Example of electrical design of shared PEI operating in direct feeding mode with several electrical installations | 39 | | Figure B.12 – Example of electrical design of shared PEI operating in island mode with one single electrical installation | 40 | | Figure B.13 – Example of electrical design of shared PEI operating in island mode with several electrical installations | 41 | | Figure B.14 – Example of electrical design of shared PEI operating in reverse feeding mode | 42 | | Figure D.1 – Example of type of architecture of individual PEI | | | Figure D.2 – Example of type of architecture of collective PEI | | | Figure D.3 – Example of type of architecture of shared PEI | | | THE SOLOW OF THE STATE S | | | | Ω, | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION ### LOW-VOLTAGE ELECTRICAL INSTALLATIONS - #### Part 8-2: Prosumer's low-voltage electrical installations #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 60364-8-2 has been prepared by IEC technical committee 64: Electrical installations and protection against electric shock. The text of this International Standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 64/2298/FDIS | 64/2335/RVD | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 60364 series, published under the general title *Low-voltage electrical installations*, can be found on the IEC website. The reader's attention is drawn to the fact that Annex E lists all of the "in-some-country" clauses on differing practices of a less permanent nature relating to the subject of this standard. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - · replaced by a revised edition, or - · amended. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. October School of the State #### INTRODUCTION Historically, utilities were managing the public transmission and distribution network from the point of view of having a central production adapted to demand variation, a top-down energy flow, a production/consumption balance done by integrated utility companies and with rather passive users. The following key factors are pushing the public electricity network to change: - the increasing number of electronic devices used daily and the growing needs as well as future needs (e.g. charging electric vehicles) will result in the structural growing of electricity consumption; - the mediated pressure on climate change results in pressure on CO₂ emissions reduction; - the electricity market is also quickly changing due mainly to its unbundling and deregulation, and to the greater number of intermittent renewable energy sources (global and local); - users' expectations are also evolving as a result of an increasing need for better public networks reliability and quality, the search for better economic performance and the willingness to pro-actively manage their energy; - technological evolution should also be considered as information and communication technology (ICT) is affordable and new energy storage solutions are emerging. All stakeholders directly involved in the electricity generation, transmission, distribution and consumption have new expectations: - customers are willing to reduce electrical energy costs in order to meet environment targets (renewable energy, energy efficiency) but also wish to benefit from the quality of electricity supply; - suppliers wish to limit customer churn rate with price and service management; - producers expect to maximize their yield of assets, to optimize their investments and to take profit from energy trading; - the aggregator wants to create conditions suitable for new market emergence; - the transmission system operator (TSO) aspires to a robust transmission public network and to meet regulation objectives (price and level of services), while the distribution system operator (DSO) wants to meet regulation objectives (price and level of services), to reduce costs by productivity (including meter) and to have a flexible network; - finally, governments and regulators are willing to create a competitive and sustainable energy market. The objective of this document is to ensure that the low-voltage electrical installation is compatible with the current and future ways to deliver safely and functionally the electrical energy to current-using equipment either from the public network or from other local sources. This document is not intended to influence all stakeholders of electricity supply on how the electrical energy should be sold and delivered. #### LOW-VOLTAGE ELECTRICAL INSTALLATIONS - #### Part 8-2: Prosumer's low-voltage electrical installations #### 1 Scope This part of IEC 60364 provides additional requirements, measures and recommendations for design, erection and verification of all types of low-voltage electrical installation according to IEC 60364-1:2005, Clause 11, including local production and/or storage of energy in order to ensure compatibility with the existing and future ways to deliver electrical energy to current-using equipment or to the public network by means of local sources. Such electrical installations are designated as prosumer's electrical installations (PEIs). This document also provides requirements for proper behaviour and actions of PEIs in order to efficiently obtain sustainable and safe operations of these installations when integrated into smart grids. These requirements and recommendations apply, within the scope of IEC 60364 (all parts), for new installations and modification of existing installations. NOTE Electrical sources for safety services including associated electrical installations and standby electrical supply systems for a secure continuity of supply, which are operated only occasionally and for short periods (e.g. monthly one hour) in parallel with the distribution grid for testing purposes, are outside the scope of this document. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock IEC 60364-4-41/AMD1:2017 IEC 60364-4-43:2008, Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent IEC 60364-5-53:2001, Electrical installations of buildings – Part 5-53: Selection and erection of electrical equipment – Isolation, switching and control IEC 60364-5-53:2001/AMD1:2002 IEC 60364-5-53:2001/AMD2:2015 IEC 60364-5-55:2011, Electrical installations of buildings – Part 5-55: Selection and erection of electrical equipment – Other equipment IEC 60364-5-55:2011/AMD1:2012 IEC 60364-5-55:2011/AMD2:2016 IEC 60364-7-712, Low-voltage electrical installations – Part 7-712: Requirements for special installations or locations – Solar photovoltaic (PV) power supply systems IEC 60364-8-1:2014, Low-voltage electrical installations – Part 8-1: Energy efficiency