Superconductivity - Part 23: Residual resistance ratio measurement - Residual resistance ratio of cavity-grade Nb superconductors #### EESTI STANDARDI EESSÕNA #### NATIONAL FOREWORD See Eesti standard EVS-EN IEC 61788-23:2021 sisaldab Euroopa standardi EN IEC 61788-23:2021 ingliskeelset teksti. This Estonian standard EVS-EN IEC 61788-23:2021 consists of the English text of the European standard EN IEC 61788-23:2021. Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation and Accreditation. Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 01.10.2021. Date of Availability of the European standard is 01.10.2021. Standard on kättesaadav Eesti Standardimis- ja Akrediteerimiskeskusest. The standard is available from the Estonian Centre for Standardisation and Accreditation. Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>. ICS 17.220, 29.050 #### Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardimis- ja Akrediteerimiskeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardimis- ja Akrediteerimiskeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autoriõiguse kaitse kohta, võtke palun ühendust Eesti Standardimis- ja Akrediteerimiskeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee #### The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation and Accreditation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation and Accreditation. If you have any questions about standards copyright protection, please contact the Estonian Centre for Standardisation and Accreditation: Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN IEC 61788-23** October 2021 ICS 17.220; 29.050 Supersedes EN IEC 61788-23:2018 and all of its amendments and corrigenda (if any) #### **English Version** # Superconductivity - Part 23: Residual resistance ratio measurement - Residual resistance ratio of cavity-grade Nb superconductors (IEC 61788-23:2021) Supraconductivité - Partie 23: Mesurage du rapport de résistance résiduelle - Rapport de résistance résiduelle des supraconducteurs de Nb à cavités (IEC 61788-23:2021) Supraleitfähigkeit - Teil 23: Messung des Restwiderstandsverhältnisses - Restwiderstandsverhältnis von hochreinen Nb Supraleitern für Kavitäten (IEC 61788-23:2021) This European Standard was approved by CENELEC on 2021-09-27. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels #### **European foreword** The text of document 90/478/FDIS, future edition 2 of IEC 61788-23, prepared by IEC/TC 90 "Superconductivity" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61788-23:2021. The following dates are fixed: - latest date by which the document has to be implemented at national (dop) 2022-06-27 level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with the (dow) 2024-09-27 document have to be withdrawn This document supersedes EN IEC 61788-23:2018 and all of its amendments and corrigenda (if any). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website. #### **Endorsement notice** The text of the International Standard IEC 61788-23:2021 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: IEC 61788-4 NOTE Harmonized as EN IEC 61788-4 IEC 61788-10 NOTE Harmonized as EN 61788-10 ## Annex ZA (normative) ## Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>Title</u> Publication EN/HD Year Year ilet percont International Electrotechnical Vocabulary --IEC 60050-815 Part 815: Superconductivity Edition 2.0 2021-08 # INTERNATIONAL STANDARD # NORME INTERNATIONALE ### Superconductivity - Part 23: Residual resistance ratio measurement – Residual resistance ratio of cavity-grade Nb superconductors ### Supraconductivité - Partie 23: Mesurage du rapport de résistance résiduelle – Rapport de résistance résiduelle des supraconducteurs de Nb à cavités ## THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence. Tel.: +41 22 919 02 11 IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland info@iec.ch www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published. #### IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. #### IEC online collection - oc.iec.ch Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs. #### Electropedia - www.electropedia.org The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### A propos de l'IEC La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées. #### A propos des publications IEC Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié. ## Recherche de publications IEC - webstore.iec.ch/advsearchform La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les proiets et les publications remplacées ou retirées. #### IEC Just Published - webstore.iec.ch/justpublished Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email. #### Service Clients - webstore.iec.ch/csc Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch. #### IEC online collection - oc.iec.ch Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins. #### Electropedia - www.electropedia.org Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne. Edition 2.0 2021-08 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Superconductivity - Part 23: Residual resistance ratio measurement – Residual resistance ratio of cavity-grade Nb superconductors Supraconductivité - Partie 23: Mesurage du rapport de résistance résiduelle – Rapport de résistance résiduelle des supraconducteurs de Nb à cavités INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 17.220; 29.050 ISBN 978-2-8322-1011-5 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. ## CONTENTS | FOREWO | ORD | 4 | | |------------|---------------------------------------------------------------------------------------------------------|------|--| | INTROD | UCTION | 6 | | | 1 Sco | pe | 7 | | | 2 Nori | native references | 7 | | | 3 Terr | ns and definitions | 7 | | | | ciple | | | | | | | | | 5.1 | Mandrel or base plate | | | | 5.1<br>5.2 | Cryostat and support of mandrel or base plate | | | | | cimen preparation | | | | • | | | | | | a acquisition and analysis | | | | 7.1 | Data acquisition hardware | | | | 7.2 | Resistance (R <sub>1</sub> ) at room temperature | | | | 7.3 | Residual resistance $(R_2)$ just above the superconducting transition | | | | 7.4 | Validation of the residual resistance measurement | | | | 7.5 | Residual resistance ratio | | | | | ertainty of the test method | | | | 9 Test | t report | | | | 9.1 | General | 13 | | | 9.2 | Test information | | | | 9.3 | Specimen information | | | | 9.4 | Test conditions | | | | 9.5 | RRR value | 14 | | | Annex A | (informative) Additional information relating to the measurement of RRR | | | | A.1 | Considerations for specimens and apparatus | 15 | | | A.2 | Considerations for specimen mounting orientation | 16 | | | A.3 | Alternative methods for increasing temperature of specimen above superconducting transition temperature | 16 | | | A.3. | | 16 | | | A.3. | | | | | A.3. | | | | | A.4 | Other test methods | 16 | | | A.4. | 1 General | 16 | | | A.4. | 2 Measurement of resistance versus time | 17 | | | A.4. | Comparison of ice point and room temperature | 17 | | | A.4. | 4 Extrapolation of the resistance to 4,2 K | 17 | | | A.4. | 5 Use of magnetic field to suppress superconductivity at 4,2 K | 18 | | | A.4. | 6 AC techniques | . 18 | | | Annex B | (informative) Uncertainty considerations | 19 | | | B.1 | Overview | .19 | | | B.2 | Definitions | | | | B.3 | Consideration of the uncertainty concept | | | | B.4 | Uncertainty evaluation example for IEC TC 90 standards | 22 | | | | (informative) Uncertainty evaluation for resistance ratio measurement of Nb | 24 | | | | valuation of uncertainty | 24 | |--------------|-------------------------------------------------------------------------------------|----| | C.1.1 | Room temperature measurement uncertainty | | | C.1.2 | Cryogenic measurement uncertainty | | | C.1.3 | Estimation of uncertainty for typical experimental conditions | | | | nter-laboratory comparison summary | | | Bibliography | y | 29 | | | | | | transition | Relationship between temperature and resistance near the superconducti | 8 | | Figure A.1 – | - Determination of the value of $R_2$ from a resistance versus time plot | 17 | | | - Graphical description of the uncertainty of regression related to the $R_2 \dots$ | 27 | | | | | | | Output signals from two nominally identical extensometers | | | Table B.2 – | Mean values of two output signals | 20 | | | Experimental standard deviations of two output signals | | | Table B.4 – | Standard uncertainties of two output signals | 21 | | Table B.5 – | Coefficients of variation of two output signals | 21 | | Table C.1 – | Uncertainty of measured parameters | 27 | | | RRR values obtained by inter-laboratory comparison using liquid nelium | | | | ó, | | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION #### SUPERCONDUCTIVITY - # Part 23: Residual resistance ratio measurement – Residual resistance ratio of cavity-grade Nb superconductors #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. IEC 61788-23 has been prepared by IEC technical committee 90: Superconductivity. It is an International Standard. This second edition cancels and replaces the first edition published in 2018. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - a) The scope of this standard was modified to restrict the range of residual resistance ratio to that encountered by providers of material for superconducting radio-frequency cavities. - b) The references to technical material were updated and corrected. The text of this International Standard is based on the following documents: | FDIS | Report on voting | |-------------|------------------| | 90/478/FDIS | 90/482/RVD | Full information on the voting for its approval can be found in the report on voting indicated in the above table. The language used for the development of this International Standard is English. This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at <a href="https://www.iec.ch/members\_experts/refdocs">www.iec.ch/members\_experts/refdocs</a>. The main document types developed by IEC are described in greater detail at <a href="https://www.iec.ch/standardsdev/publications">www.iec.ch/standardsdev/publications</a>. A list of all parts in the IEC 61788 series, published under the general title *Superconductivity*, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. IMPORTANT – The 'color inside' logo on the cover page of this publication indicates that it contains colors which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a color printer. #### INTRODUCTION High-purity niobium is the chief material used to make superconducting radio-frequency cavities. Similar grades of niobium may be used in the manufacture of superconducting wire. Procurement of raw materials and quality assurance of delivered products often use the residual resistance ratio (RRR) to specify or assess the purity of a metal. RRR is defined for non-superconducting metals as the ratio of electrical resistance measured at room temperature (293 K) to the resistance measured for the same specimen at low temperature (~4,2 K). The low-temperature value is often called the residual resistance. Higher purity is associated with higher values of RRR. Niobium presents special problems due to its transformation to a superconducting state at $\sim$ 9 K, so DC electrical resistance is effectively zero below this temperature. The definition above would then yield an infinite value for RRR. This document describes a test method to determine the residual resistance value by using a plot of the resistance to temperature as the test specimen is gradually warmed through the superconducting transition in the absence of an applied magnetic field. This results in a determination of the residual resistance at just above superconducting transition, $\sim$ 10 K, from which RRR is subsequently determined. International Standards also exist to determine the RRR of superconducting wires. In contrast to superconducting wires, which are usually a composite of a superconducting material and a non-superconducting material and the RRR value is representative of only the non-superconducting component, here the entire specimen is composed of superconducting niobium. Frequently, niobium is procured as a sheet, bar, tube, or rod, and not as a wire. For such forms, test specimens will likely be a few millimetres in the dimensions transverse to electric current flow. This difference is significant when making electrical resistance measurements, since niobium samples will likely be much longer than that for the same length-to-diameter ratio as a wire, and higher electrical current may be required to produce sufficient voltage signals. Guidance for sample dimensions and electrical connections is provided in Annex A. Test apparatus should also take into consideration aspects such as the orientation of a test specimen relative to the liquid helium surface, accessibility through ports on common liquid helium dewars, design of current contacts, and minimization of thermal gradients over long specimen lengths. These aspects distinguish this document from similar wire standards. Other test methods have been used to determine RRR. Some methods use a measurement at a temperature other than 293 K for the high resistance value. Some methods use extrapolations at 4,2 K in the absence of an applied magnetic field for the low resistance value. Other methods use an applied magnetic field to suppress superconductivity at 4,2 K. A comparison between this document and some other test methods is presented in Annex A. Note that systematic differences of up to 10 % are produced by these other methods, which is larger than the target uncertainty of this document. It is therefore important to apply this document or the appropriate corrections listed in Annex A according to the test method used. Whenever possible, this test method should be transferred to vendors and collaborators who also perform RRR measurements. To promote consistency, the results of inter-laboratory comparisons are described in Clause C.2.