IEC TS 62607-6-10 Edition 1.0 2021-10 # TECHNICAL SPECIFICATION Nanomanufacturing – Key control characteristics – Part 6-10: Graphene-based material – Sheet resistance: Terahertz time-domain spectroscopy ### THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch ## About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published. #### IEC publications search - webstore.iec.ch/advsearchform The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications. IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch. #### IEC online collection - oc.iec.ch Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs. #### Electropedia - www.electropedia.org The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. ## IEC TS 62607-6-10 Edition 1.0 2021-10 # TECHNICAL SPECIFICATION Nanomanufacturing – Key control characteristics – Part 6-10: Graphene-based material – Sheet resistance: Terahertz time-domain spectroscopy INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 07.120 ISBN 978-2-8322-1033-3 Warning! Make sure that you obtained this publication from an authorized distributor. ### CONTENTS | F | DREWO |)RD | 4 | | |--|----------|--|----|--| | ١N | TRODU | JCTION | 6 | | | 1 | Scop | oe | 7 | | | 2 | Norn | native references | 7 | | | 3 | Term | is and definitions | 7 | | | | 3.1 | General terms | 7 | | | | 3.2 | Key control characteristics measured according to this document | | | | | 3.3 | Terms related to the measurement method described in this document | | | | 4 | Gene | eral | 11 | | | | 4.1 | Measurement principle | 11 | | | | 4.2 | Sample preparation method | 13 | | | | 4.3 | Description of measurement equipment | 13 | | | | 4.3.1 | Principal components of a THz-TDS system | 13 | | | | 4.3.2 | | | | | | 4.4 | Supporting materials | | | | | 4.5 | Calibration standards | | | | | 4.6 | Measurement conditions | | | | 5 | Mea | surement procedure | | | | | 5.1 | Calibration of the measurement equipment | | | | | 5.2 | Detailed protocol of the measurement procedure | | | | | 5.3 | Measurement accuracy | | | | 6 | | analysis / interpretation of results | | | | 7 | Resu | ılts to be reported | | | | | 7.1 | Cover sheet | | | | | 7.2 | Measurement conditions | | | | | 7.3 | Measurement specific information | | | | | 7.4 | Measurement results | | | | A۱ | nnex A | (informative) Worked example | | | | | A.1 | Background | | | | | A.2 | Measurement protocol | 26 | | | | A.3 | Test report | | | | Annex B (informative) Application examples | | | | | | | B.1 | General | | | | | B.2 | Conductance map of CVD graphene on quartz | | | | Αı | | (informative) Theoretical background | | | | | C.1 | Reflection and transmission of plane electromagnetic waves | | | | | C.2 | Transmission coefficient through a thin, conductive film | | | | | C.3 | Sheet conductivity of a thin, conductive film | | | | | C.3. | ů , | | | | ۸. | C.3.2 | č , | | | | Al | | (informative) Considerations for custom-built systems | | | | | D.1 | Linearity of the THz-TDS detection system | | | | D: | D.2 | Calibration of custom-built equipment | | | | Ď١ | niiograf | phy | 44 | | | | 12 | |--|----------------------| | Figure 2 – Sample scheme comprised of a thin film of graphene on a dielectric substrate. | 12 | | Figure 3 – Principal components of a classical THz-TDS system | 14 | | Figure 4 – Comparison of different transmission geometries. | 15 | | Figure 5 – Comparison of different reflection geometries | 16 | | Figure 6 – Photograph of a CVD monolayer of graphene on PET substrate | 21 | | Figure 7 – THz-TDS conductance and resistance maps of the sample | 21 | | Figure 8 – Analysis of high conductive areas in the conductivity map | 22 | | Figure 9 – Analysis of low conductive areas in the conductivity map | 22 | | Figure 10 – Analysis of low resistance areas in the resistance map | 23 | | Figure 11 – Analysis of high resistance areas in the resistance map | 23 | | Figure 12 – Conductance maps at two different frequencies: 0,5 THz and 0,75 THz | 24 | | Figure A.1 – Colour map of sheet resistance results at the selected frequency. Sheet resistance map of the wafer at 0.5 THz, with step size 1 mm | | | Figure B.1 – Photograph of a graphene film on a 100 mm quartz wafer and related conductivity map | 33 | | Figure B.2 – Detailed view of subsections | 34 | | Figure C.1 – Reflection and transmission for a thin film on a substrate | 35 | | Figure C.2 – Reflection and transmission for a thin film on a substrate | 40 | | | | | Table A.4. Illustration of magazinement must sel | 26 | | Table A.1 – Illustration of measurement protocol | _ | | Table A.2 – Product identification | | | Table A.2 – Product identification | 30 | | · | 30 | | Table A.2 – Product identification | 30
30
31 | | Table A.2 – Product identification | 30
30
31
31 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION #### NANOMANUFACTURING - KEY CONTROL CHARACTERISTICS - ## Part 6-10: Graphene-based material – Sheet resistance: Terahertz time-domain spectroscopy #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. IEC TS 62607-6-10 has been prepared by IEC technical committee 113. Nanotechnology for electrotechnical products and systems. It is a Technical Specification. The text of this Technical Specification is based on the following documents: | Draft | Report on voting | |-------------|------------------| | 113/568/DTS | 113/604/RVDTS | Full information on the voting for its approval can be found in the report on voting indicated in the above table. The language used for the development of this Technical Specification is English. This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications. A list of all parts of the IEC TS 62607 series, published under the general title *Nanomanufacturing – Key control characteristics*, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - · replaced by a revised edition, or - amended. IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. O Dietick Ochologie of Files #### INTRODUCTION Graphene is an important nanomaterial in R&D and industry due to its outstanding electrical properties. It is already present in multiple commercial products, and furthermore, it is a strong candidate as an electrical material in numerous new application areas. However, no established method to characterize its local electrical performance and quality across large areas exists yet. The four-point probe method, either as single point or mapping (scanning) technique, is an industry standard for silicon wafers and conventional thin films, but unavoidably leads to damage, due to the physical contact between the tip and the one atom thin graphene film. The microwave resonant cavity method has been demonstrated as a mapping technique for graphene, but with spatial and sample resolution limited by the cavity size: no attempt has been made to scale this technique to industrially relevant sample sizes. Other methods for providing spatial information relating in some way to electrical quality include optical, Raman and scanning electron microscopies. These ones give local information that only indirectly relates to the electrical properties of interest. The focus of this document is to provide a method to characterize the electrical performance, quality and uniformity of large-area graphene films with terahertz time-domain spectroscopy (THz-TDS). THz-TDS allows for large-area mapping of graphene films in a non-destructive, fast and robust mode, without contact and with no sample preparation at all. This method has no upper limitations in the size of the graphene film to be analysed. It is applicable for statistical process control, comparison of graphene films produced by different vendors, obtaining information about imperfections on the microscale such as grain boundaries and defects, and uniquely allows process modifications and development to be analysed step by step due to its non-destructive property and ability to access buried conductive layers. THz-TDS has been tested against other methods such as van der Pauw (vdP), electrical resistance tomography and calibrated Kelvin probe force microscopy with good matching of results [1] [2]¹. THz-TDS method provides direct measurements of the sheet resistance, both in transmission and reflection modes [3]. The spatial resolution is related with the diffraction limited THz beam spot size, reaching about 300 μ m at 1 THz, and the maximum surface density of measurements is determined by the minimum step-size of the actuator moving the sensor or the sample. The default sample in this document is monolayer graphene grown by chemical vapour deposition (CVD) on or transferred to a quartz substrate. Nevertheless, the methodology can be extended to graphene on silicon carbide (epitaxial graphene), multilayer graphene, and thin conductors generally, including other 2D materials, on several other dielectric and high resistive substrates including sapphire, silicon coated with silicon dioxide, silicon carbide, polymers and III-V semiconductors, among others. It is noted that for the reflection-mode THz-TDS, the technique tolerates less THz-transparent substrates (e.g. medium to highly doped silicon) than the transmission-mode THz-TDS. Numbers in square brackets refer to the Bibliography. #### NANOMANUFACTURING - KEY CONTROL CHARACTERISTICS - ## Part 6-10: Graphene-based material – Sheet resistance: Terahertz time-domain spectroscopy #### 1 Scope This part of IEC TS 62607 establishes a standardized method to determine the electrical key control characteristic sheet resistance (R_s) for films of graphene-based materials by terahertz time-domain spectroscopy (THz-TDS). In this technique, a THz pulse is sent to the graphene-based material. The transmitted or reflected THz waveform is measured in the time domain and transformed to the frequency domain by the fast Fourier transform (FFT). Finally, the spectrum is fitted to the Drude model (or another comparable model) to obtain the sheet resistance. - This non-contact inspection method is non-destructive, fast and robust for the mapping of large areas of graphene films, with no upper sample size limit. - The method is applicable for statistical process control, comparison of graphene films produced by different vendors, or to obtain information about imperfections on the microscale such as grain boundaries and defects, etc. - The method is applicable for graphene grown by chemical vapour deposition (CVD) or other methods on or transferred to dielectric substrates, including but not limited to quartz, silica (SiO₂), silicon (Si), sapphire, silicon carbide (SiC) and polymers. - The minimum spatial resolution is in the order of 300 μm (at 1 THz) given by the diffraction limited spot size of the THz pulse. #### 2 Normative references There are no normative references in this document. #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 General terms 3.1.1 graphene graphene layer single-layer graphene monolayer graphene 1LG single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure