TECHNICAL REPORT ## CEN/TR 17602-30-01 ## RAPPORT TECHNIQUE #### TECHNISCHER BERICHT December 2021 ICS 49.140 #### **English version** ### Space product assurance - Worst case analysis Assurance produit des projets spatiaux - Analyse pire RaumfahrtProduktsicherung - Worst-Case-Analysis This Technical Report was approved by CEN on 22 November 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5. CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. **CEN-CENELEC Management Centre:** Rue de la Science 23, B-1040 Brussels # **Table of contents** | Europ | ean For | eword | 4 | | | |--------|--|--|----|--|--| | 1 Scop | oe | | 5 | | | | 2 Refe | rences | | 6 | | | | | | | | | | | | | nitions and abbreviated terms | | | | | 3.1 | | from other documents | | | | | 3.2 | Terms specific to the present document | | | | | | | 3.2.1 | ambient temperature | | | | | | 3.2.2 | biased variation value | | | | | | 3.2.3 | component parameters | | | | | | 3.2.4 | component specification | | | | | | 3.2.5 | design lifetime | | | | | | 3.2.6 | effective ageing data | | | | | | 3.2.7 | lifetime assumed in database | | | | | | 3.2.8 | radiationrandom variation value | 7 | | | | | 3.2.9 | | | | | | | 3.2.10 | reference condition | | | | | | 3.2.11 | temperature assumed in database | 8 | | | | | 3.2.12 | variation factors | 8 | | | | | 3.2.13 | worst case | | | | | | 3.2.14 | worst case analysis (WCA) | 8 | | | | | 3.2.15 | functional block | | | | | 3.3 | Abbreviated terms | | 8 | | | | 4 Gene | eral met | thodology | 10 | | | | 4.1 | | ction | 10 | | | | 4.2 | | agram of WCA | | | | | 4.3 | | cation of the critical aspects w.r.t. worst case performance | | | | | 4.4 | Evaluation of worst case performance | | | | | | 4.5 | Comparison of WCA with requirements | | | | | | 5 Anal | ysis pa | rameters and technical issues | 14 | | | #### CEN/TR 17602-30-01:2021 (E) | | | on of worst case parameters within parts database14 | |---------|-----------|---| | | 5.1.1 | Variation factors14 | | | 5.1.2 | Summary on deviations18 | | 5.2 | Phase | and timing considerations within the WCA19 | | 2 | 5.2.1 | Introduction19 | | | 5.2.2 | Timing of transient pulses19 | | 5.3 | Numer | ical analysis techniques19 | | | 5.3.1 | Approach19 | | | 5.3.2 | Extreme value analysis20 | | | 5.3.3 | Extreme value analysis combined approach20 | | | 5.3.4 | Root-sum-squared analysis20 | | | 5.3.5 | Monte Carlo analysis20 | | 6 WCA | and p | roject phases22 | | | • | | | Figure | es | 0, | | • | | v diagram of WCA11 | | - | | 6 . | | Tables | 6 | | | Table 5 | 5-1: Devi | ations and attributes summary18 | | Table 5 | 5-2: Num | erical techniques and value summary21 | ## **European Foreword** This document (CEN/TR 17602-30-01:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN. It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16602-30. This Technical report (CEN/TR 17602-30-01:2021) originates from ECSS-Q-HB-30-01A. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association. er sp. with a w. This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace). # 1 Scope This handbook provides guidelines to perform the worst case analysis. It applies to all electrical and electronic equipment. This worst case analysis (WCA) method can also be applied at subsystem level to justify electrical interface specifications and design margins for equipment. It applies to all project phases where electrical interface requirements are established and circuit design is carried out. ace generally to used to va. The worst case analysis is generally carried out when designing the circuit. For selected circuitry, worst case analysis (WCA) can be used to validate a conceptual design approach. | EN Reference | Reference in text | Title | |----------------|-------------------|---| | EN 16601-00-01 | ECSS-ST-00-01 | ECSS system - Glossary of terms | | EN 16603-10-02 | ECSS-E-ST-10-02 | Space engineering -Verification | | EN 16602-30 | ECSS-Q-ST-30 | Space product assurance - Dependability | | EN 16602-30-11 | ECSS-Q-ST-30-11 | Space product assurance - Derating - EEE components | | - | ECSS-Q-TM-30-12 | Space product assurance – End-of-life parameters drifts - EEE components | | EN 16602-30-02 | ECSS-Q-ST-30-02 | Space product assurance - Failure modes, effects and criticality analysis | | EN 16602-40-02 | ECSS-Q-ST-40-02 | Space product assurance - Hazard analysis | | - | ECSS-Q-TM-40-04 | Space product assurance - Sneak analysis | | EN 16602-40-12 | ECSS-Q-ST-40-12 | Space product assurance - Fault tree analysis – Adoption notice ECSS / IEC61025 | | | CRTAWCCA | Worst Case Circuit Analysis Application Guidelines,
1993 Reliability Analysis Center, Rome NY, U.S.A | | | JPL D-5703 | Jet Propulsion Laboratory Reliability Analyses
Handbook | | | | Tianubuok | | | | | | . | | |