Geotechnical investigation and testing - Field testing - Part 1: Electrical cone and piezocone penetration test (ISO 22476-1:2022) #### EESTI STANDARDI EESSÕNA #### NATIONAL FOREWORD See Eesti standard EVS-EN ISO 22476-1:2023 sisaldab Euroopa standardi EN ISO 22476-1:2023 ingliskeelset teksti. This Estonian standard EVS-EN ISO 22476-1:2023 consists of the English text of the European standard EN ISO 22476-1:2023. Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation and Accreditation. Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 11.01.2023. Date of Availability of the European standard is 11.01.2023. Standard on kättesaadav Eesti Standardimis-ja Akrediteerimiskeskusest. The standard is available from the Estonian Centre for Standardisation and Accreditation. Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>. #### ICS 93.020 Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardimis- ja Akrediteerimiskeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardimis-ja Akrediteerimiskeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardimis-ja Akrediteerimiskeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation and Accreditation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation and Accreditation. If you have any questions about copyright, please contact Estonian Centre for Standardisation and Accreditation: Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee # EUROPEAN STANDARD # NORME EUROPÉENNE # **EUROPÄISCHE NORM** January 2023 EN ISO 22476-1 ICS 93.020 Supersedes EN ISO 22476-1:2012, EN ISO 22476-1:2012/AC:2013 **English Version** # Geotechnical investigation and testing - Field testing - Part 1: Electrical cone and piezocone penetration test (ISO 22476-1:2022) Reconnaissance et essais géotechniques - Essais en place - Partie 1: Essais de pénétration au cône électrique et au piézocône (ISO 22476-1:2022) Geotechnische Erkundung und Untersuchung -Felduntersuchungen - Teil 1: Drucksondierungen mit elektrischen Messwertaufnehmern und Messeinrichtungen für den Porenwasserdruck (ISO 22476-1:2022) This European Standard was approved by CEN on 30 September 2022. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels #### **European foreword** This document (EN ISO 22476-1:2023) has been prepared by Technical Committee ISO/TC 182 "Geotechnics" in collaboration with Technical Committee CEN/TC 341 "Geotechnical Investigation and Testing" the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2023, and conflicting national standards shall be withdrawn at the latest by July 2023. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 22476-1:2012, EN ISO 22476-1:2012/AC:2013. Any feedback and questions on this document should be directed to the users' national standards body/national committee. A complete listing of these bodies can be found on the CEN website. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom. #### **Endorsement notice** The text of ISO 22476-1:2022 has been approved by CEN as EN ISO 22476-1:2023 without any modification. | Contents | | | | | |----------|--------------------------------|---|----------|--| | Fore | word | | v | | | Intr | oductio | on | v | | | 1 | Scon | oe | 1 | | | 2 | | native references | | | | | | | | | | 3 | Terms, definitions and symbols | | | | | | 3.1
3.2 | Terms and definitions Symbols | | | | | _ | | | | | 4 | Equipment | | | | | | 4.1 | General | | | | | | 4.1.2 Gaps and soil seals | | | | | 4.2 | Cone penetrometer | | | | | 4.3 | Surface roughness and hardness | | | | | 4.4 | Cone | 12 | | | | 4.5 | Friction sleeve | | | | | 4.6 | Filter element | | | | | | 4.6.1 General filter location | | | | | | 4.6.2 Pore pressure u_1 | | | | | | 4.6.3 Pore pressure u_2 | | | | | 4.7 | Pushrods Pushrods | | | | | 4.8 | Measuring system | | | | | | 4.8.1 Accuracy | | | | | | 4.8.2 Sensors for cone resistance and sleeve friction | | | | | | 4.8.3 Sensor for pore pressure | | | | | | 4.8.4 Sensor for inclination | | | | | | 4.8.5 Sensor for temperature | | | | | | 4.8.6 Measuring of penetration length | 16 | | | | 4.9 | 4.8.7 Raw data Thrust machine | | | | _ | | | | | | 5 | Test procedures | | | | | | 5.1 | 1 1 /1 | | | | | | 5.1.1 General 5.1.2 Calibration and verification requirements | 17 | | | | | 5.1.3 Cone penetrometer class conformity assessment | | | | | 5.2 | Position and verticality of thrust machine | 20 | | | | 5.3 | Preparation of the test | | | | | 5.4 | Pushing of the cone penetrometer | 21 | | | | 5.5 | Use of friction-reducing techniques | | | | | 5.6 | Frequency of test data recording | | | | | 5.7 | Registration of penetration length | | | | | 5.8
5.9 | Pore pressure dissipation test (PPDT)
Test completion | | | | | 5.10 | Evaluation of CPT/CPTU in relation to test category | | | | | 5.11 | Equipment checks and calibrations | | | | | 5.12 | Safety requirements | | | | 6 | Test results | | | | | | 6.1 | Measured parameters | | | | | 6.2 | Correction of parameters | | | | | 6.3 | Calculated parameters | | | | 7 | | orting | | | | , | 7 1 | Conoral | 27
25 | | | 7.2 Reporting of test results | 27 | |--|-----------------------| | 7.2.1 General information | | | 7.2.2 Location of the test | | | 7.2.3 Test equipment | | | 7.2.4 Test results 7.3 Presentation of test results | | | Annex A (informative) Suitability of test methods | | | Annex B (normative) Maintenance, checks and calibration | | | Annex C (informative) Calibration report example | | | Annex D (normative) Calculation of penetration depth | | | Annex E (informative) Correction of sleeve friction for water pressure | | | Annex F (informative) Preparation of the piezocone | | | Annex G (informative) Friction reduction techniques | | | Bibliography | | | Sapretien Generales | | | iv © ISO 2022 | – All rights reserved | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 182, *Geotechnics*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 341, *Geotechnical Investigation and Testing*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement). This second edition cancels and replaces the first edition (ISO 22476-1:2012), which has been technically revised. It also incorporates the Technical Corrigendum ISO 22476-1:2012/Cor 1:2013. The main changes are as follows: - dimensional tolerances of cone penetrometer have been updated; - application class scheme has been replaced by cone penetrometer class and test category classification scheme; - introduction of temperature influence on measurements monitoring and requirements of internal temperature sensor for cone penetrometer class 0; - requirements for the calibration of cone penetrometers have been added; - minor updates to figures and text have been made. A list of all parts in the ISO 22476 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### Introduction This document establishes general principles equipment requirements, the execution of and reporting on cone and piezocone penetration tests. The cone penetration test (CPT) consists of pushing a cone penetrometer using a series of pushrods into the soil at a constant rate of penetration. During penetration, measurements of cone resistance and sleeve friction are recorded. The piezocone penetration test (CPTU) also includes the measurement of pore pressures around the cone. Two International Standards define cone penetration tests: this document defines CPT and CPTU practice using electronic transducers; ISO 22476-12 defines CPT practice using mechanical measuring systems. "Cone resistance" is the term used in practice and also in this document, although "cone penetration resistance" is a more correct description of the process. The test results of this document are especially suited for the qualitative and/or quantitative determination of a soil profile together with other investigations (e.g. sampling according to ISO 22475-1 and identification ISO 14688-1) or as a relative comparison with in situ tests. The results from a cone penetration test are typically used to evaluate: - stratification; - soil behaviour type; - geotechnical parameters such as: - soil density; - shear strength parameters; - deformation and consolidation characteristics; - hydraulic conductivity and ground water pressure. The results from a cone penetration test may also be used directly in geotechnical design calculations. ## Geotechnical investigation and testing — Field testing — ### Part 1: ## Electrical cone and piezocone penetration test #### 1 Scope This document establishes equipment, procedural and reporting requirements and recommendations on cone and piezocone penetration tests. NOTE This document fulfils the requirements for cone and piezocone penetration tests as part of geotechnical investigation and testing according to the EN 1997 series. This document specifies the following features: - a) type of cone penetration test; - b) cone penetrometer class according to <a>Table 2; - c) test categories according to <a>Table 3; - d) penetration length or penetration depth; - e) elevation of the ground surface or the underwater ground surface at the location of the cone penetration test with reference to a datum; - f) location of the cone penetration test relative to a reproducible fixed location reference point; - g) pore pressure dissipation tests. This document covers onshore and nearshore cone penetration test (CPT). For requirements for offshore CPT, see ISO 19901-8. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories #### 3 Terms, definitions and symbols For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminology databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at https://www.electropedia.org/