INTERNATIONAL STANDARD ISO 18475 First edition 2023-10 Environmental solid matrices — **Determination of polychlorinated** biphenyls (PCB) by gas chromatography - mass selective detection (GC-MS) or electron-capture A ectic detection (GC-ECD) Reference number ISO 18475:2023(E) © ISO 2023 tation, no part of 'including plot' 'om either'. All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | | | | | | |----------|---------------------|---|--|-----------------|--|--| | Fore | word | | | v | | | | Intr | oductio | n | | vii | | | | 1 | Scon | e | | 1 | | | | 2 | | | eferences | | | | | | | | | | | | | 3 | | Terms and definitions | | | | | | 4 | Prin | Principle | | | | | | 5 | | Interferences | | | | | | | 5.1 | Interference with sampling and extraction | | | | | | | 5.2 | | rence with GC | | | | | 6 | | - | ks | | | | | 7 | | | | | | | | | 7.1 | General | | | | | | | 7.2 | | nts for extraction | | | | | | 7.3 | _ | nts for clean-up | | | | | | | 7.3.1
7.3.2 | Clean-up B using silica gel 60 for column chromatography | | | | | | | 7.3.3 | Clean-up C using gel permeation chromatography (GPC) | | | | | | | 7.3.4 | Clean-up D using Florisil® | 6 | | | | | | 7.3.5 | Clean-up E using silica H ₂ SO ₄ /silica NaOH | 7 | | | | | | 7.3.6 | Clean-up F using benzenesulfonic acid/sulfuric acid | 7 | | | | | | 7.3.7 | Clean-up G using TBA sulfite reagent | | | | | | | 7.3.8
7.3.9 | Clean-up I using pyrogenic copper | / | | | | | 7.4 | | romatographic analysis | | | | | | 7.5 | | irds | | | | | | | 7.5.1 | General | | | | | | | 7.5.2 | Calibration standards | | | | | | | 7.5.3 | Internal and injection standards | | | | | | 7.6 | | ration of standard solutions | 10 | | | | | | 7.6.1 | Preparation of calibration standard solutions of PCBs | | | | | | | 7.6.2
7.6.3 | Preparation of injection standard solution | | | | | 0 | A | | | | | | | 8 | Appa
8.1 | Fytrac | tion and clean-up procedures | II
11 | | | | | 8.2 | Gasch | romatograph | 12 | | | | 0 | | | | | | | | 9 | Sam j
9.1 | | ge and preservation
e storage | | | | | | 9.1 | | e pre-treatment | | | | | 10 | | • | | | | | | 10 | 10.1 | | test | | | | | | 10.1 | | tion | | | | | | 10.2 | | General | | | | | | | | Extraction procedure 1: Samples using acetone/petroleum ether or | | | | | | | | hexane-like solvent and agitation or sonication | 14 | | | | | | 10.2.3 | Extraction procedure 2: Samples using Soxhlet or pressurized liquid | | | | | | | 10 2 4 | extraction proceeding 2: Samples using agetone/notrology other or | 15 | | | | | | 10.2.4 | Extraction procedure 3: Samples using acetone/petroleum ether or hexane-like solvent/sodium chloride and agitation | 15 | | | | | 10.3 | Concer | ntration | | | | | | 10.4 | | | | | | ### ISO 18475:2023(E) | | | | | 5 | |--------|--------------|------------|---|----------| | | | | | | | | | | | | | Biblic | ograph | ı y | | 40 | | | | | | | | Anno | | | e) Calculation method for the estimation of total PCB content | | | Anne | | | re) Examples for gas chromatographic conditions and retention times | 22 | | | _ | | re) Repeatability and reproducibility data | 27 | | 13 | | - | | | | | | | | | | 12 | Droc | icion | | 25 | | 11 | Perfo | ormance | e characteristics | 25 | | | | 10.8.7 | Calculation | 25 | | | | 10.8.6 | Check on ECD method performance | 24
24 | | | | | Measurement | | | | | 10.8.3 | Calibration of the method using internal standards | 24 | | | | 10.8.2 | ECD conditions | 24 | | | | 10.8.1 | General | 24 | | | 10.8 | Electro | on capture detection (ECD) | 24 | | | | | Calculation | | | | | | Check on method performance | | | | | 10.7.3 | MeasurementIdentification | 21
22 | | | | | Calibration of the method using an internal standard | | | | | | Mass spectrometric conditions | | | | 10.7 | Mass s | pectrometry (MS) | 20 | | | | 10.6.2 | Setting the gas chromatograph | 19 | | | 10.0 | | General | | | | 10.5
10.6 | | on of the injection standardromatographic analysis (GC) | | | | 10 F | | Clean up I – AgNO ₃ /silica | | | | | 10.110 | and some other organic sulfur compounds | | | | | 10.4.9 | Clean-up H – Clean-up using pyrogenic copper to remove elemental sulfur | | | | | 10.4.8 | Clean-up G – TBA sulfite reagent | 19 | | | | 10.4.7 | Clean-up F – Benzenesulfonic acid/sulfuric acid | 18 | | | | 10.4.5 | Clean-up D – Florisil®
Clean-up E – Silica H ₂ SO ₄ /silica NaOH | 18
18 | | | | 10.4.4 | Clean-up C – Gel permeation chromatography | 17 | | | | 10.4.3 | Clean-up B – Silica gel | 17 | | | | 10.4.2 | Clean-up A – Aluminium oxide | 17 | | | | | General | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights. Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by the European Committee for Standardization (CEN) (as EN 17322:2020) and was adopted, without modification other than those given below, by Technical Committee ISO/TC 190, *Soil quality*, Subcommittee SC 3, *Chemical and physical characterization*. - change of EN ISO 5667-15 reference to ISO 5667-15 reference; - change of EN ISO 16720 reference to ISO 16720 reference; - change of EN ISO 22892 reference to ISO 22892 reference; - change of EN ISO 5667-13 reference to ISO 5667-13 reference; - change of EN ISO 6468 reference to ISO 6468 reference; - uniform spelling of sulfate and sulfite; - editorially revised. This first edition cancels and replaces ISO 10382:2002 and ISO 13876:2013, which have been technically revised. The main changes are as follows: - deletion of OCP analysis (this document specifies methods for quantitative determination of polychlorinated biphenyls); - addition of GC-MS as a detection method; - extension of the scope to sludge, sediment, treated biowaste and waste; #### ISO 18475:2023(E) - addition of modern extraction techniques and commonly used methods with optimized extraction time, proven clean-up methods and state of the art quantification methods; - update of normative references. ese b. Occumbent is a breview and alter of the control con Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### Introduction Polychlorinated biphenyls (PCB) have been widely used as additives in industrial applications where chemical stability has been required. This stability on the other hand creates environmental problems when PCB are eventually released into the environment. Since some of these PCB compounds are highly toxic, their presence in the environment (air, water, soil, sediment and waste) is regularly monitored and controlled. At present determination of PCB is carried out in these matrices in most of the routine laboratories following the preceding steps for sampling, pre-treatment, extraction and clean-up, by measurement of specific PCB by means of gas chromatography in combination with mass spectrometric detection (GC-MS) or gas chromatography with electron capture detector (GC-ECD). This document was developed by merging of EN 16167:2018, initially elaborated as a CEN Technical Specification in the European project 'HORIZONTAL' and validated by CEN/TC 400 with the support of BAM, with EN 15308, published by CEN/TC 292. Considered the different matrices and possible interfering compounds, this document does not contain one single possible way of working. Several choices are possible, in particular relating to clean-up. Detection with both MS-detection and ECD-detection is possible. Two different extraction procedures are described and 9 clean-up procedures. The use of internal and injection standards is described in order to have an internal check on choice of the extraction and clean-up procedure. The method is as far as possible in agreement with the method described for PAH (EN 16181:2018 and EN 15527:2008). It has been tested for ruggedness. This document is applicable and validated for several types of matrices as indicated in <u>Table 1</u> (see also <u>Annex A</u> for the results of the validation). Matrix Materials used for validation Soil Sandy soil Mix of soil from the vicinity of Berlin, Germany and PCB-free German reference soil Sludge Mix of municipal waste water treatment plant sludge from North Rhine Westphalia, Germany Biowaste Mix of compost from the vicinity of Berlin, Germany and sludge from North Rhine Westphalia, Germany Waste Contaminated soil, building debris, waste wood, sealant waste, electronic waste, shredder light fraction, cable shredder waste Table 1 — Matrices for which this document is applicable and validated **WARNING** — Persons using this document should be familiar with usual laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. **IMPORTANT** — It is absolutely essential that tests conducted according to this document be carried out by suitably trained staff. This document is a previous general ded by tills # Environmental solid matrices — Determination of polychlorinated biphenyls (PCB) by gas chromatography - mass selective detection (GC-MS) or electron-capture detection (GC-ECD) #### 1 Scope This document specifies methods for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste, and waste using GC-MS and GC-ECD (see <u>Table 2</u>). | | Target analyte | CAS-RN a | | | |--|--------------------------------------|------------|--|--| | PCB28 | 2,4,4'-trichlorobiphenyl | 7012-37-5 | | | | PCB52 | 2,2',5,5'-tetrachlorobiphenyl | 35693-99-3 | | | | PCB101 | 2,2',4,5,5'-pentachlorobiphenyl | 37680-73-2 | | | | PCB118 | 2,3',4,4',5-pentachlorobiphenyl | 31508-00-6 | | | | PCB138 | 2,2',3,4,4',5'-hexachlorobiphenyl | 35065-28-2 | | | | PCB153 | 2,2',4,4',5,5'-hexachlorobiphenyl | 35065-27-1 | | | | PCB180 | 2,2',3,4,4',5,5'-heptachlorobiphenyl | 35065-29-3 | | | | a CAS-RN Chemical Abstracts Service Registry Number. | | | | | Table 2 — Target analytes of this document The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract. Under the conditions specified in this document, lower limit of application from 1 μ g/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μ g/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μ g/kg cannot be reached. Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCB and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used. NOTE The analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to in EN 61619, EN 12766-1 and ISO 6468 respectively. The method can be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 5667-15, Water quality — Sampling — Part 15: Guidance on the preservation and handling of sludge and sediment samples #### ISO 18475:2023(E) ISO 8466-1, Water quality — Calibration and evaluation of analytical methods — Part 1: Linear calibration function ISO 16720, Soil quality — Pretreatment of samples by freeze-drying for subsequent analysis ISO 18512, Soil quality — Guidance on long and short term storage of soil samples ISO 22892, Soil quality — Guidelines for the identification of target compounds by gas chromatography and mass spectrometry #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminology databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at https://www.electropedia.org/ #### 3.1 #### critical pair pair of congeners that shall be separated to a predefined degree (e.g. R = 0.5) to ensure chromatographic separation meets minimum quality criteria $$R = 2 \times \frac{\Delta t}{Y_a + Y_b} (x) \tag{1}$$ where R resolution Δt difference in retention times of the two peaks a and b in seconds (s) Y_a peak width at the base of peak a in seconds (s) $Y_{\rm h}$ peak width at the base of peak b in seconds (s)