Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters - Part 2: Preparation of methyl esters of fatty acids (ISO 129662:2011)

EESTI STANDARDI EESSÕNA
Käesolev Eesti standard EVS-EN ISO 129662:2011 sisaldab Euroopa standardi EN ISO 12966-2:2011 ingliskeelset teksti.

Standard on kinnitatud Eesti Standardikeskuse 28.02.2011 käskkirjaga ja jõustub sellekohase teate avaldamisel EMS Teatajas.


Euroopa standardimisorganisatsioonide poolt rahvuslikele liikmetele Eureopa standardi teksti kättesaadavaks tegemise kyapäev on 15.02.2011.

Standard on kättesaadav Eesti standardiorganisatsioonist.

NATIONAL FOREWORD

## This Estonian standard EVS-EN ISO 129662:2011 consists of the English text of the European standard EN ISO 12966-2:2011.

This standard is ratified with the order of Estonian Centre for Standardisation dated 28.02.2011 and is endorsed with the notification published in the official bulletin of the Estonian national standardisation organisation.

Date of Availability of the European standard text 15.02.2011.

The standard is available from Estonian standardisation organisation.

ICS 67.200.10


[^0]
## English Version

## Aninnal and vegetable fats and oils - Gas chromatography of fatty zeid methyl esters - Part 2: Preparation of methyl esters of fatty acids (ISO 12966-2:2011)



Chromatographie en phasegazeuse des esters méthyliques d'acides gras - Palife Préparation des esters méthyliques d'acides gras (1SQ 12966-2:2011)

Tierische und pflanzliche Fette und Öle Gaschromatographie von Fettsäuremethylestern - Teil 2: Herstellung von Fettsäuremethylestern (ISO 12966-2:2011)

This European Standard was approved by CEy
CEN members are bound to comply with the CEN GENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard withoutany alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CENOENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (ED) glish, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own langrage and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgiam, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Ita Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerlandand United Kingdom.


EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

## Foreword

This document (EN ISO 12966-2:2011) has been prepared by Technical Committee ISO/TC 34 "Food products" in collaboration with Technical Committee CEN/TC 307 "Oilseeds, vegetable and animal fats and oils and their by-products - Methods of sampling and analysis" the secretariat of which is held by AFNOR.

This European $\mathscr{E}$ taadard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2011, and conflicting national standards shall be withdrawn at the latest by Augusta vi.
Attention is drawn to torsibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENEREC] shall not be held responsible for identifying any or all such patent rights.
This document supersedes EASO 5509:2000.
According to the CEN/CENELE internal Regulations, the national standards organizations of the following countries are bound to implement Elis European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kihedom

The text of ISO 12966-2:2011 has been approved by CEN as a EN ISO 12966-2:2011 without any modification.


## Contents

Foreword ..... iv
Introduction ..... v
1 Scope. .....  1
2 Normativereferences ..... 1
3 Reactions 0 . ..... 1
4 Methodology .....  2
4.1 Preparation of test sample ..... 2
4.2 Rapid method .....  2
4.3 General method .....  .4
4.4 Transmethylation using boron trifluoride $\left(\mathrm{BF}_{3}\right)$ catalyst .....  6
4.5 Acid-catalysed transmetOylation of glycerides .....  .9
Annex A (informative) Thin-layer chromatography method for testing the completeness of derivatization ..... 11
Bibliography ..... 15


## Introduction

## General

Oils and fats (i.e. liquid and solid lipids) are predominantly composed of fatty acid esters of glycerol (triacylglycerols, FAGs), with smaller amounts of fatty acid esters of sterols and long chain aliphatic alcohols. Due to the high motecular mass of the TAGs and their consequent low volatility, they are difficult to analyse directly by gas chyorratography (GC), especially if a detailed analysis of unsaturated fatty acids is required. Fatty acids themselves do not chromatograph well (except for short-chain-length fatty acids, e.g. butanoic and pentanoic acids). It is therefore better practice to form fatty acid esters, usually the fatty acid methyl esters (FAMEs), prior to GC.

The analysis of oils and fats has been extensively reviewed in Reference [9].
The formation of FAMEs is a eriical stage in the analysis of fatty acids. Non-quantitative conversion of fatty acids to FAMEs, modification of structure of fatty acids (e.g. changes in positional and geometric isomers present) and formation of non-FAME artefacts may all affect the quantitative determination of fatty acid composition.

Transesterification is one mechanism which can be employed to form FAMEs from fatty acid esters in fats (i.e. triacylglycerol). Alkali- or acid-catalysed trensesterification procedures can be used to form FAMEs in a methanolic medium; the procedure can be tenned transmethylation. Transmethylation is a reversible process and a large excess of methanol is required to maintain an equilibrium position which favours formation of the FAMEs. Water can prevent the reaction going toompletion, and its presence should therefore be minimized. Alkali-catalysed procedures do not produce FAME from free fatty acids, due to the formation of soaps.

Esterification is an acid-catalysed mechanism which can be employed to form FAMEs from fatty acids. It is possible that the fatty acids are naturally present in the sample of fat under examination. Formation of FAMEs by this mechanism is commonly termed methylation. Agam.an excess of methanol and the absence of water are preconditions for the quantitative formation of FAMEs

This part of ISO 12966 provides guidelines for the preparation Ofatty acid methyl esters. In support of these guidelines, various procedures to prepare fatty acid methyl estersare specified. These include:
a) "rapid" transmethylation under alkaline conditions;
b) "general" transmethylation/methylation under sequential alkaline and acied conditions;
c) boron trifluoride $\left(\mathrm{BF}_{3}\right)$ transmethylation/methylation.

## "Rapid" transmethylation method under alkali-catalysed conditions

This method is applicable to the routine analysis of edible fats and oils containing fatty acids down to butanoic acid (C4:0) and/or for the determination of butanoic acid or hexanoic acid (C6:0) by GC using an internal standard

Alkaline catalysts transesterify neutral lipids in the presence of anhydrous methanol (transmethylation) more rapidly than acid catalysts. The disadvantages of such alkali-catalysed procedures are that free fatty acids are not esterified, and the presence of water may prevent the transmethylation going to completion (hydrolysis of the FAMEs to free fatty acids). The most commonly used reagents are potassium and sodium hydroxide and sodium methoxide in the presence of anhydrous methanol.

## "General" transmethylation/methylation under sequential alkaline and acid conditions

This method under sequential alkali- and acid-catalysed conditions is applicable to all oils and fats including distillate and acid oils, but is not recommended for lauric oils. Short-chain fatty acid methyl esters are easily lost during reflux. For lauric acid oils, the "rapid" transmethylation method is recommended.

During methylation, substances containing the following configurations can be totally or partially decomposed:
a) keto, epoxy, hydroxyl, hydroperoxy groups;
b) cyclopropyl and cyclopropenyl groups;
c) acetylenic fatty acids?

## Boron trifluoride $\left(\mathrm{BF}_{3}\right)$ tranmethylation/methylation

Owing to the toxicity of $\mathrm{BF}_{3}$ it is recommended that this method only be used in extremis.
The $\mathrm{BF}_{3}$ method is applicable for mostoils, fats and derivatives (fatty acids, soaps) with the exception of milk fats and fats containing fatty acids with specific groups.

During methylation, substances containing the following configurations can be totally or partially decomposed:
a) keto, epoxy, hydroxyl, hydroperoxy groups $\Omega$
b) cyclopropyl and cyclopropenyl groups;
c) acetylenic fatty acids.

If the fatty matter contains such substances in only very span amounts (e.g. cottonseed oil), the method can be applied, otherwise the "rapid" or "general" transmethylation ${ }^{2}$ nethylation methods should be followed.
For GC, the optimum recovery of the methyl esters from the reaction mixture is obtained by using isooctane (2,2,4-trimethylpentane). However, only about $75 \%$ of the methycerpoate present is recovered.

Boron trifluoride is a strong Lewis acid, and in the form of its coordinatocomplex with methanol, under reflux conditions, it can rapidly methylate fatty acids. Methanolic boron triflugfide does transmethylate fatty acid
esters (e.g. triglyceride), but the rate of reaction is slower than the methylation of fatty acids. Methanolic boron conditions, it can rapidly methylate fatty acids. Methanolic boron triflugfide does transmethylate fatty acid
esters (e.g. triglyceride), but the rate of reaction is slower than the methylation of fatty acids. Methanolic boron trifluoride solution is commercially available, which enhances the attractiveneos of this acid catalyst, but there are potential disadvantages associated with the use of this reagent.
a) It has been reported that high concentrations of boron trifluoride (50 \% maseraction) produce methoxy artefacts from unsaturated fatty acids.

b) The reagent has a limited shelf-life at ambient temperature and should be kept refrigerâted.
c) Aged reagent may produce artefacts and therefore it is recommended that each new batch purchased be tested before use and periodically during its lifetime.
d) Methanolic boron trifluoride is an acidic reagent and therefore may produce derivatives of fatty acids containing labile groups which may give rise to spurious peaks on FAME chromatograms.

## Additional information

Much attention has been given to the preparation and analysis of esters of short-chain fatty acids by GC, largely because of their occurrence in milk fats. Short-chain fatty acids, in the free state or esterified to glycerol, can be converted completely to methyl esters by any of the reagents described in the preceding paragraphs, but quantitative recovery from the reaction medium may not be achieved unless special precautions are taken. Losses can occur at several stages in any procedure. Short-chain fatty acid esters (methyl especially) are volatile and may be lost selectively on refluxing the esterification medium, they are more soluble in water than longer-chain esters and can be lost in an aqueous extraction step or they may be distilled off when the extracting solvent is evaporated. Selective losses can also occur if non-saponifiable impurities have th be removed by sublimation or thin-layer chromatography (TLC) purification. The best esterification procedures for short-chain fatty acids are those in which heating of the reagents is avoided and in which stages involving aqueous extraction and solvent removal are absent.

Injection of reaction pedja containing basic and acidic esterification catalysts directly on to GC columns shortens their working fiyes. The top few centimetres of packed columns can be replenished periodically, while lengths of deactivated tubrigg or "retention gaps" ahead of capillary columns protect them. This can be a small price to pay for the speed, sinplicity, and accuracy of these procedures.

Additionally, this part of ISO 12966 gives a simple TLC procedure to check the effectiveness of the transmethylation/methylation. ThSprocedure may also be used to check the generic composition of an oil or fat before transmethylation/methylationis undertaken.


# Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters - 

## Part 2: <br> Preparation of methyl esters of fatty acids

## 1 Scope

This part of ISO 12966 specifies methods of preparing the methyl esters of fatty acids.
It includes methods for preparing fateyacid methyl esters from animal and vegetable fats and oils, fatty acids and soaps. To cover different requirements four methylation methods are specified, namely:
a) a "rapid" transmethylation procedure under alkaline conditions;
b) a "general" transmethylation/methylation ©ocedure under sequential alkaline and acid conditions;
c) a $\mathrm{BF}_{3}$ transmethylation procedure;
d) an alternative procedure using acid-catalysed tranmethylation of glycerides.

Methyl esters so produced are used in various analytical procedures requiring such derivatives, e.g. gas-liquid chromatography (GLC), thin-layer chromatography (TLC)Sng infrared spectrometry (IR).

## 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 661, Animal and vegetable fats and oils - Preparation of test sample


## 3 Reactions



The determination of the fatty acid composition of oils and fats is one of the fundamental analyses within the fats and oils sector and has been extensively reviewed in Reference [9]. For this purpose, the fatty acid components of lipids are usually converted to methyl esters followed by GC analysis.

The "rapid" method (4.2) does not derivatize free fatty acids (FFAs) present in oil to fatty acid methyl esters (FADEs). If FFAs are present, the assumption is usually made that the FFAs have the same fatty acid distribution as the triglycerides. This is usually true for crude oils, but less so for fractionated or refined oils. Except for some cold-pressed oils, as a general rule oils with $<0,5 \%$ mass fraction FFAs have probably been refined; oils above can be assumed to be crude. The tolerable concentration of FFAs in oil depends on the particular oil being analysed and also the intended use of the FAME data generated. The presence of FFAs in


[^0]:    Standardite reprodutseerimis- ja levitamisõigus kuulub Eesti Standardikeskusele
    Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonilisse süsteemi või edastamine ükskõik millises vormis või millisel teel on keelatud ilma Eesti Standardikeskuse poolt antud kirjaliku loata.

    Kui Teil on küsimusi standardite autorikaitse kohta, palun võtke ühendust Eesti Standardikeskusega:
    Aru 10 Tallinn 10317 Eesti; www.evs.ee; Telefon: 605 5050; E-post: info@evs.ee
    Right to reproduce and distribute belongs to the Estonian Centre for Standardisation
    No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without permission in writing from Estonian Centre for Standardisation.

