Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions - Method by analysis of evolved carbon dioxide - Part 1: General method

Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions - Method by analysis of evolved carbon dioxide - Part 1: General method

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

Käesolev Eesti standard EVS-EN ISO 14855-1:2007 sisaldab Euroopa standardi EN ISO 14855-1:2007 ingliskeelset teksti. This Estonian standard EVS-EN ISO 14855-1:2007 consists of the English text of the European standard EN ISO 14855-1:2007.

Käesolev dokument on jõustatud 30.10.2007 ja selle kohta on avaldatud teade Eesti standardiorganisatsiooni ametlikus väljaandes.

This document is endorsed on 30.10.2007 with the notification being published in the official publication of the Estonian national standardisation organisation.

Standard on kättesaadav Eesti standardiorganisatsioonist.

The standard is available from Estonian standardisation organisation.

Käsitlusala:

This part of ISO 14855 specifies a method for the determination of the ultimate aerobic biodegradability of plastics, based on organic compounds, under controlled composting conditions by measurement of the amount of carbon dioxide evolved and the degree of disintegration of the plastic at the end of the test. This method is designed to simulate typical aerobic composting conditions for the organic fraction of solid mixed municipal waste. The test material is exposed to an inoculum which is derived from compost. The composting takes place in an environment wherein temperature, aeration and humidity are closely monitored and controlled. The test method is designed to yield the percentage conversion of the carbon in the test material to evolved carbon dioxide as well as the rate of conversion.

Scope:

This part of ISO 14855 specifies a method for the determination of the ultimate aerobic biodegradability of plastics, based on organic compounds, under controlled composting conditions by measurement of the amount of carbon dioxide evolved and the degree of disintegration of the plastic at the end of the test. This method is designed to simulate typical aerobic composting conditions for the organic fraction of solid mixed municipal waste. The test material is exposed to an inoculum which is derived from compost. The composting takes place in an environment wherein temperature, aeration and humidity are closely monitored and controlled. The test method is designed to yield the percentage conversion of the carbon in the test material to evolved carbon dioxide as well as the rate of conversion.

2

ICS 13.030.99, 83.080.01

Võtmesõnad:

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

August 2007

EN ISO 14855-1

ICS 13.030.99: 83.080.01

Supersedes EN ISO 14855:2004

English Version

Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions - Method by analysis of evolved carbon dioxide - Part 1: General method (ISO 14855-1:2005)

Évaluation de la biodégradabilité aérobie ultime des matériaux plastiques dans des conditions contrôlées de compostage - Méthode par analyse du dioxyde de carbone libéré - Partie 1: Méthode générale (ISO 14855-1:2005)

Bestimmung der vollständigen aeroben Bioabbaubarkeit von Kunststoff-Materialien unter den Bedingungen kontrollierter Kompostierung - Verfahren mittels Analyse des freigesetzten Kohlenstoffdioxides - Teil 1: Allgemeines Verfahren (ISO 14855-1:2005)

This European Standard was approved by CEN on 16 August 2007.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Foreword

The text of ISO 14855-1:2005 has been prepared by Technical Committee ISO/TC 61 "Plastics" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 14855-1:2007 by Technical Committee CEN/TC 249 "Plastics", the secretariat of which is held by IBN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2008, and conflicting national standards shall be withdrawn at the latest by February 2008.

This document supersedes EN ISO 14855:2004.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of ISO 14855-1:2005 has been approved by CEN as EN ISO 14855-1:2007 without any modifications.

INTERNATIONAL STANDARD

ISO 14855-1

First edition 2005-10-15

Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide —

Part 1: **General method**

Évaluation de la biodégradabilité aérobie ultime des matériaux plastiques dans des conditions contrôlées de compostage — Méthode par analyse du dioxyde de carbone libéré —

Partie 1: Méthode générale

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below

© ISO 2005

r utilized in any form m either ISO at th All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Cor	ntents	Page
Fore	word	iv
Intro	oduction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Principle	3
5	Test environment	3
6	Reagents	3
7	Apparatus	
8	Procedure	5
9	Calculation and expression of results	9
10	Validity of results	10
11	Test report	10
Anne	ex A (informative) Principle of test system	12
Anne	ex B (informative) Examples of graphical representation of carbon dioxide evolution biodegradation curves	
	ex C (informative) Example of mass-loss determination	
Anne	ex D (informative) Round-robin testing	17
	ex E (informative) Examples of forms	
Biblio	iography	21

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 14855-1 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*.

It cancels and replaces ISO 14855:1999, the main aims of the revision being to combine the parent standard with its amendment ISO 14855:1999/Amd.1:2004 and to renumber the standard as Part 1.

ISO 14855 consists of the following parts, under the general title *Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions* — *Method by analysis of evolved carbon dioxide*:

- Part 1: General method
- Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test [in preparation]

Introduction

The main method specified in this part of ISO 14855 uses a solid-phase respirometric test system based on mature compost used as a solid bed, a source of nutrients, and an inoculum rich in thermophilic microorganisms. Mature compost is a very heterogeneous and complex material. Therefore, it can be difficult to quantify the residual polymeric material left in the bed at the end of the test, to detect possible low-molecular-mass molecules released into the solid bed by the polymeric material during degradation, and to assess the biomass. As a result, it can be difficult to perform a complete carbon balance. Another difficulty which is sometimes encountered with mature compost is a "priming effect": the organic matter present in large amounts in the mature compost can undergo polymer-induced degradation, known as the "priming effect", which affects the measurement of the biodegradability.

To overcome these difficulties and to improve the reliability of the method, the mature compost can be replaced by a solid mineral medium which is used as the composting bed, thus facilitating analyses. This variant can be used to measure the biodegradation in terms of CO2 evolution, to quantify and analyse the biomass and the residues of polymeric material left in the solid bed at the end of the test, and to perform a complete carbon balance. Furthermore, the method is not sensibly affected by the priming effect and can, An al ana, therefore, be used to assess materials known to cause this problem with mature compost. The mineral bed can also be subjected to an ecotoxicological analysis to verify the absence of any ecotoxic activity in the bed after biodegradation.

© ISO 2005 – All rights reserved

Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide —

Part 1:

General method

WARNING — Sewage, activated sludge, soil and compost may contain potentially pathogenic organisms. Therefore appropriate precautions should be taken when handling them. Toxic test compounds and those whose properties are unknown should be handled with care.

1 Scope

This part of ISO 14855 specifies a method for the determination of the ultimate aerobic biodegradability of plastics, based on organic compounds, under controlled composting conditions by measurement of the amount of carbon dioxide evolved and the degree of disintegration of the plastic at the end of the test. This method is designed to simulate typical aerobic composting conditions for the organic fraction of solid mixed municipal waste. The test material is exposed to an inoculum which is derived from compost. The composting takes place in an environment wherein temperature, aeration and humidity are closely monitored and controlled. The test method is designed to yield the percentage conversion of the carbon in the test material to evolved carbon dioxide as well as the rate of conversion.

Subclauses 8.6 and 8.7 specify a variant of the method, using a mineral bed (vermiculite) inoculated with thermophilic microorganisms obtained from compost with a specific activation phase, instead of mature compost. This variant is designed to yield the percentage of carbon in the test substance converted to carbon dioxide and the rate of conversion.

The conditions described in this part of ISO 14855 may not always correspond to the optimum conditions for the maximum degree of biodegradation to occur.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5663:1984, Water quality — Determination of Kjeldahl nitrogen — Method after mineralization with selenium

ISO 8245:1999, Water quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)

© ISO 2005 – All rights reserved