EUROKOODEKS 2: BETOONKONSTRUKTSIOONIDE PROJEKTEERIMINE. OSA 4: KINNITUSTE PROJEKTEERIMINE BETOONI Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete #### EESTI STANDARDI EESSÕNA #### NATIONAL FOREWORD | | This Estonian standard EVS-EN 1992-4:2018 consists of the English text of the European standard EN 1992-4:2018. | |---|--| | Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation. | | Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 26.09.2018. | Date of Availability of the European standard is 26.09.2018. | | Standard on kättesaadav Eesti
Standardikeskusest. | The standard is available from the Estonian Centre for Standardisation. | Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>. #### ICS 91.010.30, 91.080.40 Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation. If you have any questions about copyright, please contact Estonian Centre for Standardisation: Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 1992-4 September 2018 ICS 91.010.30; 91.080.40 Supersedes CEN/TS 1992-4-1:2009, CEN/TS 1992-4-2:2009, CEN/TS 1992-4-3:2009, CEN/TS 1992-4-4:2009, CEN/TS 1992-4-5:2009 #### **English Version** # Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete Eurocode 2 - Calcul des structures en béton - Partie 4 : Conception et calcul des éléments de fixation pour béton Eurocode 2 - Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton This European Standard was approved by CEN on 9 March 2018. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels | Cont | ents | Page | |----------|---|------| | Furon | oean foreword | 5 | | - | Scope | | | 1
1.1 | | | | | General | | | 1.2 | Type of fasteners and fastening groups | | | 1.3 | Fastener dimensions and materials | | | 1.4 | Fastener loading | | | 1.5 | Concrete strength and type | | | 1.6 | Concrete member loading | | | 2 | Normative references | | | 3 | Terms, definitions, symbols and abbreviations | | | 3.1 | Terms and definitions | | | 3.2 | Symbols and abbreviations | | | 3.2.1 | Indices | | | 3.2.2 | Superscripts | | | 3.2.3 | Actions and resistances (listing in alphabetical order) | 22 | | 3.2.4 | Concrete and steel | 27 | | 3.2.5 | Fasteners and fastenings, reinforcement | 28 | | 3.2.6 | Units | | | 4 | Basis of design | 30 | | 4.1 | General | | | 4.2 | Required verifications | 31 | | 4.3 | Design format | | | 4.4 | Verification by the partial factor method | | | 4.4.1 | Partial factors for actions | | | 4.4.2 | Partial factors for resistance | | | 4.5 | Project specification | | | 4.6 | Installation of fasteners | | | 4.7 | Determination of concrete condition | | | | Durability | | | 5 | | | | 6 | Derivation of forces acting on fasteners – analysis | 37 | | 6.1 | General | | | 6.2 | Headed fasteners and post-installed fasteners | | | 6.2.1 | Tension loads | | | 6.2.2 | Shear loads | | | 6.3 | Anchor channels | | | 6.3.1 | General | | | 6.3.2 | Tension loads | 45 | | 6.3.3 | Shear loads | | | 6.4 | Forces assigned to supplementary reinforcement | | | 6.4.1 | General | 47 | | 6.4.2 | Tension loads | 47 | | 6.4.3 | Shear loads | 47 | | 7 | Verification of ultimate limit state | 48 | | 7.1 | General | 48 | | 7.2 | Headed and post-installed fasteners | | |--------------|---|-----| | 7.2.1 | Tension load | 49 | | 7.2.2 | Shear load | 64 | | 7.2.3 | Combined tension and shear loads | 76 | | 7.3 | Fasteners in redundant non-structural systems | 77 | | 7.4 | Anchor channels | 77 | | 7.4.1 | Tension load | 77 | | 7.4.2 | Shear load | | | 7.4.3 | Combined tension and shear loads | 95 | | 8 | Verification of ultimate limit state for fatigue loading | 97 | | 8.1 | General | 97 | | 8.2 | Derivation of forces acting on fasteners - analysis | | | 8.3 | Resistance | | | 8.3.1 | Tension load | 98 | | 8.3.2 | Shear load | | | 8.3.3 | Combined tension and shear load | 99 | | 9 | Verification for seismic loading | 100 | | 9.1 | General | 100 | | 9.2 | Requirements | 100 | | 9.3 | Derivation of forces acting on fasteners | 102 | | 9.4 | Resistance | 102 | | 10 | Verification for fire resistance | 102 | | 11 | Verification of serviceability limit state | 102 | | Annex | A (normative) Additional rules for verification of concrete elements due to loads | | | | applied by fastenings | 103 | | A.1 | General | | | A.2 | Verification of the shear resistance of the concrete member | 103 | | Annex | B (informative) Durability | 105 | | B.1 | General | | | B.2 | Fasteners in dry, internal conditions | | | B.3 | Fasteners in external atmospheric or in permanently damp internal exposure | 200 | | | condition | 105 | | B.4 | Fasteners in high corrosion exposure by chloride and sulphur dioxide | 105 | | Annex | C (normative) Design of fastenings under seismic actions | 106 | | C.1 | General | 106 | | C.2 | Performance categories | | | C.3 | Design criteria | | | C.4 | Derivation of forces acting on fasteners - analysis | | | C.4.1 | General | 109 | | C.4.2 | Addition to EN 1998-1:2004, 4.3.3.5 | | | C.4.3 | Addition to EN 1998-1:2004, 4.3.5.1 | 110 | | C.4.4 | Additions and alterations to EN 1998-1:2004, 4.3.5.2 | | | C.4.5 | Additions and alterations to EN 1998-1:2004, 4.3.5.4 | | | C.5 | Resistance | | | C.6 | Displacements of fasteners | | | Annex | x D (informative) Exposure to fire – design method | 116 | | D.1 | General | | | D.2 | Partial factors | 116 | | D.3 | Actions | 116 | | D.4 | Resistance | | |----------------|--|-----| | D.4.1 | General | | | D.4.2
D.4.3 | Tension loadShear load | | | D.4.3
D.4.4 | Combined tension and shear load | | | | E (normative) Characteristics for the design of fastenings to be provided by Europea | | | | Technical Products Specification | 121 | | | F (normative) Assumptions for design provisions regarding execution of fastenings | | | F.1
F.2 | GeneralPost-installed fasteners | | | r.z
F.3 | Headed fasteners | | | F.4 | Anchor channels | | | Annex | G (informative) Design of post-installed fasteners – simplified methods | | | G.1 | General | | | G.2 | Method B | | | G.3 | Method C | 127 | | Biblio | graphy | 128 | | DIDIIO | | 120 | O , | | | | | | | | | | | | | , | | | | | | | | (0) | | | | O' | _ | | | ### **European foreword** This document (EN 1992-4:2018) has been prepared by Technical Committee CEN/TC 250 "Structural Eurocodes", the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2019 and conflicting national standards shall be withdrawn at the latest by March 2019. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. This document supersedes CEN/TS 1992-4-1:2009, CEN/TS 1992-4-2:2009, CEN/TS 1992-4-3:2009, CEN/TS 1992-4-4:2009 and CEN/TS 1992-4-5:2009. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association. This document differs from CEN/TS 1992-4-1:2009, CEN/TS 1992-4-2:2009, CEN/TS 1992-4-3:2009, CEN/TS 1992-4-4:2009 and CEN/TS 1992-4-5:2009 as follows: - The content of the CEN/TS 1992-4 series is condensed and completely revised to be published as one single standard covering the design of the different types of cast-in situ and post-installed fastening systems. - Normative references are updated. Some standards given in the CEN/TS 1992-4 series are moved to an added Bibliography. - 1.2 (5) and Fig.1.2: The configurations of fastenings with headed or post-installed fasteners covered by EN 1992-4 are described in more detail. - 1.3 (1), 1.3(2) and 7.3: Provisions on fasteners for fastening statically indeterminate non-structural systems are added. Details of the design method are given in CEN/TR 17079, Design of fasteners for use in concrete Redundant non-structural systems. - 4.4.2.2 and Table 4.1: Partial material safety factors for accidental design situations are introduced which are about 15% smaller than for permanent and transient design situations. - 6.2.1 (2): More specific conditions to ensure a rigid fixture are given and provisions in case of an elastic, but flexible fixture are added. - 7 to 11: The verifications are based on the characteristic concrete cylinder strength and not cube strength and the factors k_i for calculating the basic characteristic resistances for the different failure modes are adjusted accordingly. - 7.2.1.4 (1), Formula (7.1) and 7.2.1.4 (7): The factor $\psi_{M,N}$ is introduced to take into account the favorable effect of a compression force between fixture and concrete in case of bending moments with or without axial force on the concrete cone resistance. - 7.2.1.6 (2), Formula (7.14): The product dependent factor ψ_{sus} is introduced to take account of the influence of sustained load on the bond strength of post-installed bonded fasteners for the verification of combined pull-out and concrete failure - 7.2.2.5 (13) and Clause 7.4.2.5 (7): The factor $\psi_{\text{re,V}}$ to take into account the effect of edge reinforcement and closely spaced stirrups or wire mesh on the characteristic resistance for concrete edge failure is limited to cracked concrete. - 7.4.1.3 (2) and 7.4.2.3 (2): For the verification of anchor channels for local flexure of channel lips under tension loads and shear loads without lever arm the influence of closely spaced channel bolts is considered. - 7.4.1.7, Formula (7.69): For the verification of anchor channels for concrete blow-out failure the factor $\psi_{g,Nb}$ is deleted. - 7.4.2.3.1 and Table 7.5: For the verification of anchor channels subjected to shear forces without lever arm in case of steel failure the failure modes 'anchor' and 'connection between anchor and channel' are added. - 7.4.2.5 (2): Formula (7.78) is modified. The influence of edge distance on the basic characteristic resistance in case of concrete edge failure is taken into account with $c_1^{4/3}$ instead with $c_1^{1,5}$. - 7.4.3 and Table 7.6: In case of interaction of shear and tension loads acting on anchor channels provisions are given for the different modes of steel failure and for failure modes other than steel failure. - Clause 8: The values for the characteristic fatigue resistance in case of concrete related failure modes for $2 \cdot 10^6$ load cycles are reduced. - Clause 9 and Annex C: The verifications for seismic loading are completely revised. - Clause 10: Provisions for the verification for fire resistance are added. Informative Annex D provides a design method for cast-in-place headed fasteners, anchor channels and post-installed fasteners exposed to fire. - Normative Annex E: Characteristics for the design of fastenings to be provided by European Technical Product Specifications are added. - Annex F: Product specific Sections of the CEN/TS 1992-4 series on assumptions for design provisions regarding execution of fastenings are condensed in this normative Annex. - Annex G: The design provisions of the CEN/TS 1992-4 series for post-installed fasteners using simplified methods are moved to this informative Annex. - Annex B of CEN/TS 1992-4:1"Plastic design approach" is moved to CEN/TR 17081, *Design of fastenings for use in concrete Plastic design of fastenings with headed and post-installed fasteners.* #### EN 1992 is composed of the following parts: - EN 1992-1-1, Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings; - EN 1992-1-2, Eurocode 2: Design of concrete structures Part 1-2: General rules Structural fire design: - EN 1992-2, Eurocode 2 Design of concrete structures Concrete bridges Design and detailing rules; - EN 1992-3, Eurocode 2 Design of concrete structures Part 3: Liquid retaining and containment structures; - EN 1992-4, Eurocode 2 Design of concrete structures Part 4: Design of fastenings for use in concrete. The numerical values for partial factors and other reliability parameters are recommended values. The recommended values apply when: - a) the fasteners comply with the requirements of 1.2 (3), and - b) the installation complies with the requirements of 4.6. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, , De gary, I. agal, Rom. Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### National Annex for EN 1992-4 This EN gives values with Notes indicating where national choices may have to be made. When this EN is made available at national level it may be followed by a National Annex containing all Nationally Determined Parameters to be used for the design of fastenings according to this EN for use in the relevant country. ctal fa. National choice of the partial factors and reliability parameters is allowed in design according to this EN in the following sections: #### 1 Scope #### 1.1 General (1) This European Standard provides a design method for fastenings (connection of structural elements and non-structural elements to structural components), which are used to transmit actions to the concrete. This design method uses physical models which are based on a combination of tests and numerical analysis consistent with EN 1990:2002, 5.2. Additional rules for the transmission of the fastener loads within the concrete member to its supports are given in EN 1992-1-1 and Annex A of this EN. Inserts embedded in precast concrete elements during production, under Factory Production Control (FPC) conditions and with the due reinforcement, intended for use only during transient situations for lifting and handling, are covered by CEN/TR 15728. - (2) This EN is intended for safety related applications in which the failure of fastenings may result in collapse or partial collapse of the structure, cause risk to human life or lead to significant economic loss. In this context it also covers non-structural elements. - (3) The support of the fixture can be either statically determinate or statically indeterminate. Each support can consist of one fastener or a group of fasteners. - (4) This EN is valid for applications which fall within the scope of the EN 1992 series. In applications where special considerations apply, e.g. nuclear power plants or civil defence structures, modifications can be necessary. - (5) This EN does not cover the design of the fixture. Rules for the design of the fixture are given in the appropriate Standards meeting the requirements on the fixture as given in this EN. - (6) This document relies on characteristic resistances and distances which are stated in a European Technical Product Specification (see Annex E). At least the characteristics of Annex E are given in a European Technical Product Specification for the corresponding loading conditions providing a basis for the design methods of this EN. #### 1.2 Type of fasteners and fastening groups - (1) This EN uses the fastener design theory 1 (see Figure 1.1) and applies to: - a) cast-in fasteners such as headed fasteners, anchor channels with rigid connection (e.g. welded, forged) between anchor and channel; - b) post-installed mechanical fasteners such as expansion fasteners, undercut fasteners and concrete screws; - c) post-installed bonded fasteners and bonded expansion fasteners. - (2) For other types of fasteners, modifications of the design provisions can be necessary. - (3) This EN applies to fasteners with established suitability for the specified application in concrete covered by provisions, which refer to this EN and provide data required by this EN. The suitability of the fastener is stated in the relevant European Technical Product Specification. ¹⁾ In fastener design theory the concrete tensile capacity is directly used to transfer loads into the concrete component. Figure 1.1 — Fastener design theory — Example - (4) This EN applies to single fasteners and groups of fasteners. In a group of fasteners, the loads are applied to the individual fasteners of the group by means of a common fixture. In a group of fasteners, this European Standard applies only if fasteners of the same type and size are used. - (5) The configurations of fastenings with cast-in place headed fasteners and post-installed fasteners covered by this EN are shown in Figure 1.2. - (6) For anchor channels, the number of anchors is not limited. - te .t concre. (7) Post-installed ribbed reinforcing bars used to connect concrete members are covered by a European Technical Product Specification. #### Key - 1 fastener - 2 steel plate - a) Fastenings without hole clearance for all edge distances and for all load directions, and fastenings with hole clearance according to Table 6.1 situated far from edges $\left(c_i \geq \max\left\{10h_{\rm ef}; 60d_{\rm nom}\right\}\right)$ for all load directions and fastenings with hole clearance according to Table 6.1 situated near to an edge $\left(c_i < \max\left\{10h_{\rm ef}; 60d_{\rm nom}\right\}\right)$ loaded in tension only - b) Fastenings with hole clearance according to Table 6.1 situated near to an edge $\left(c_i < \max\left\{10h_{\mathrm{ef}}; 60d_{\mathrm{nom}}\right\}\right)$ for all load directions Figure 1.2 — Configuration of fastenings with headed and post-installed fasteners covered by this EN #### 1.3 Fastener dimensions and materials - (1) This EN applies to fasteners with a minimum diameter or a minimum thread size of 6 mm (M6) or a corresponding cross section. In case of fasteners for fastening statically indeterminate non-structural systems as addressed in 7.3, the minimum thread size is 5 mm (M5). The maximum diameter of the fastener is not limited for tension loading but is limited to 60 mm for shear loading. - (2) EN 1992-4 applies to fasteners with embedment depth $h_{\rm ef} \ge 40$ mm. Only for fastening statically indeterminate non-structural systems as addressed in 7.3 fasteners with effective embedment depth of at least 30 mm are considered, which may be reduced to 25 mm in internal exposure conditions. For fastenings with post-installed bonded fasteners, only fasteners with an embedment depth $h_{\rm ef} \le 20{\rm d}$ are covered. The actual value for a particular fastener may be found in the relevant European Technical Product Specification. - (3) This EN covers metal fasteners made of either carbon steel (EN ISO 898-1 and EN ISO 898-2, EN 10025-1, EN 10080), stainless steel (EN 10088-2 and EN 10088-3, EN ISO 3506-1 and EN ISO 3506-2) or malleable cast iron (ISO 5922). The surface of the steel can be coated or uncoated. This EN is valid for fasteners with a nominal steel tensile strength $f_{\rm uk} \leq 1~000~{\rm N\,/\,mm^2}$. This limit does not apply to concrete screws. #### 1.4 Fastener loading - (1) Loading on the fastenings covered by this document can be static, quasi-static, fatigue and seismic. The suitability of the fastener to resist fatigue and seismic loadings is specifically stated in the relevant European Technical Product Specification. Anchor channels subjected to fatigue loading or seismic loading are not covered by this EN. - (2) The loading on the fastener resulting from the actions on the fixture (e.g. tension, shear, bending or torsion moments or any combination thereof) will generally be axial tension and/or shear. When the shear force is applied with a lever arm a bending moment on the fastener will arise. EN 1992-4 considers axial compression on the fixture only when it is transmitted to the concrete either directly to the concrete surface without acting on the embedded fastener load transfer mechanism or via fasteners suitable for resisting compression. - (3) In case of anchor channels, shear in the direction of the longitudinal axis of the channel is not covered by this EN. NOTE Design rules for anchor channels with loads acting in the direction of the longitudinal axis of the anchor channel can be found in CEN/TR 17080, *Design of fastenings for use in concrete — Anchor channels — Supplementary rules*. (4) Design of fastenings under fire exposure is covered by this EN (see informative Annex D). #### 1.5 Concrete strength and type This EN is valid for fasteners installed in members made of compacted normal weight concrete without fibres with strength classes in the range C12/15 to C90/105 all in accordance with EN 206. The range of concrete strength classes in which particular fasteners may be used is given in the relevant European Technical Product Specification and may be more restrictive than stated above. #### 1.6 Concrete member loading In general, fasteners are prequalified for applications in concrete members under static loading. If the concrete member is subjected to fatigue or seismic loading, prequalification of the fastener specific to this type of loading and a corresponding European Technical Product Specification are required. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 206, Concrete - Specification, performance, production and conformity EN 1990:2002, Eurocode - Basis of structural design EN 1991 (all parts), Eurocode 1: Actions on structures EN 1992-1-1:2004, Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings EN 1992-1-2, Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design EN 1998 (all parts), Eurocode 8: Design of structures for earthquake resistance