# **INTERNATIONAL STANDARD**

**ISO** 17225-4

> First edition 2014-05-01

# Solid biofuels — Fuel specifications and classes —

Part 4: Graded wood chips

les s.
;—
asses de pla. Biocombustibles solides — Classes et spécifications des combustibles —

Partie 4: Classes de plaquettes de bois





nroduced or utilized 'te internet or an or ISO's mem' All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

| Contents |                                                                              |     |
|----------|------------------------------------------------------------------------------|-----|
| Fore     | eword                                                                        | iv  |
| Intr     | roduction                                                                    | v   |
| 1        | Scope                                                                        | 1   |
| 2        | Normative references                                                         | 1   |
| 3        | Terms and definitions                                                        | 2   |
| 4        | Symbols and abbreviated terms                                                | 2   |
| 5        | Specification of graded wood chips                                           | 3   |
| Ann      | nex A (informative) General guidelines for bulk density of graded wood chips | 7   |
| Bibl     | liography                                                                    | 8   |
| © ISO    | 0 2014 – All rights reserved                                                 | iii |

### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 238, *Solid biofuels*.

1 title ISO 17225 consists of the following parts, under the general title Solid biofuels — Fuel specifications and classes:

- Part 1: General requirements
- Part 2: Graded wood pellets
- Part 3: Graded wood briquettes
- Part 4: Graded wood chips
- Part 5: Graded firewood
- Part 6: Graded non-woody pellets
- Part 7: Graded non-woody briquettes

# Introduction

The objective of the ISO 17225 series is to provide unambiguous and clear classification principles for solid biofuels; to serve as a tool to enable efficient trading of biofuels; to enable good understanding between seller and buyer as well as a tool for communication with equipment manufacturers. It also facilitates authority permission procedures and reporting.

This part of ISO 17225 supports the use of graded wood chips for residential, small commercial and public building applications.

The residential, small commercial and public building applications require higher quality fuel for the following reasons:

- Small-scale equipment usually does not have advanced controls and flue gas cleaning.
- Appliances are not generally managed by professional heating engineers.
- Appliances are often located in residential and populated districts.

NOTE 1 Wood chips produced according to this part of ISO 17225 may be used in boilers tested according to EN 303–5[4].

NOTE 2 For individual contracts, ISO 17225-1 can be used.

/ta. 1722, Although these product standards may be obtained separately, they require a general understanding of the standards based on and supporting ISO 17225-1. It is recommended to obtain and use ISO 17225-1 in conjunction with these standards.

This document is a previous generated by tills

# Solid biofuels — Fuel specifications and classes —

# Part 4:

# Graded wood chips

## Scope

This part of ISO 17225 determines the fuel quality classes and specifications of graded wood chips. This part of ISO 17225 covers only wood chips produced from the following raw materials (see ISO 17225-1, Table 1):

- 1.1 Forest, plantation and other virgin wood
- 1.2 By-products and residues from wood processing industry
- 1.3.1 Chemically untreated used wood

### **Normative references**

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE ISO standards describing methods for analysis of fuel properties listed in the Bibliography, will become normative references when they are published.

ISO 16559, Solid biofuels — Terminology, definitions and descriptions<sup>1)</sup>

ISO 16948, Solid biofuels — Determination of total content of carbon, hydrogen and nitrogen<sup>2)</sup>

ISO 16968, Solid biofuels — Determination of minor elements<sup>3</sup>)

ISO 16994, Solid biofuels — Determination of total content of sulfur and chlorine<sup>4</sup>)

ISO 17225-1, Solid biofuels — Fuel specifications and classes — Part 1: General requirements

ISO 17828, Solid biofuels — Determination of bulk density<sup>5)</sup>

ISO 18122, Solid biofuels — Determination of ash content<sup>6</sup>)

ISO 18134-1, Solid biofuels — Determination of moisture content — Oven dry method — Part 1: Total  $moisture - Reference method^7$ 2

<sup>1)</sup> To be published.

<sup>2)</sup> To be published.

<sup>3)</sup> To be published.

<sup>4)</sup> To be published.

<sup>5)</sup> To be published.

<sup>6)</sup> To be published.

<sup>7)</sup> To be published.

### ISO 17225-4:2014(E)

ISO 18134-2, Solid biofuels — Determination of moisture content — Oven dry method — Part 2: Total moisture - Simplified method $^{8)}$ 

### 3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 16559 and the following apply.

#### 3.1

### wood chips

chipped *woody biomass* in the form of pieces with a defined *particle size* produced by mechanical treatment with sharp tools such as knives

Note 1 to entry: Wood chips have a subrectangular shape with a typical length of 5 mm to 50 mm and a low thickness compared to other dimensions.

#### 3.2

#### chemical treatment

any treatment with chemicals other than air, water or heat

EXAMPLE Glue and paint.

Note 1 to entry: Examples of chemical treatment are listed in ISO 17225-1.

#### 3.3

#### contamination

exposure to impurity such as poisonous or polluting substance to a fuel

#### 3.4

### commercial application

facility that utilises solid biofuel burning appliances or equipment that have similar fuel requirements as residential appliances

Note 1 to entry: Commercial applications should not be confused with industrial applications, which can utilize a much wider array of materials and have vastly different fuel requirements.

# 4 Symbols and abbreviated terms

The symbols and abbreviated terms used in this part of ISO 17225 comply with the SI system of units as far as possible.

| d   | dry (dry basis)                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| ar  | as received                                                                                                           |
| w-% | weight-percentage                                                                                                     |
| A   | Designation for ash content on dry basis, $A_d$ [w-%]                                                                 |
| BD  | Designation for bulk density as received [kg/m³]                                                                      |
| P   | Designation for particle size distribution                                                                            |
| M   | Designation for moisture content as received on wet basis, $M_{ar}$ [w-%]                                             |
| Q   | Designation for net calorific value as received, $q_{p,{\rm net,ar}}$ [MJ/kg or kWh/kg or MWh/t] at constant pressure |

NOTE 1  $\,$  1 MJ/kg equals 1 GJ/t or 0,2778 kWh/kg (1 kWh/kg equals 1 MWh/t and 1 MWh/t is 3,6 MJ/kg). 1 g/cm³ equals 1 kg/dm³. 1 mg/kg equals 0,000 1 % or 1 ppm.

<sup>8)</sup> To be published.