Plastics - Differential scanning calorimetry (DSC) - Part 7: Determination of crystallization kinetics (ISO 11357-7:2015)

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

See Eesti standard EVS-EN ISO 11357-7:2015 sisaldab Euroopa standardi EN ISO 11357-7:2015 ingliskeelset teksti.	
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 09.09.2015.	Date of Availability of the European standard is 09.09.2015.
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 83.080.01

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; koduleht <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Aru 10, 10317 Tallinn, Estonia; homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD NORME EUROPÉENNE

EN ISO 11357-7

EUROPÄISCHE NORM

September 2015

ICS 83.080.01

Supersedes EN ISO 11357-7:2013

English Version

Plastics - Differential scanning calorimetry (DSC) - Part 7: Determination of crystallization kinetics (ISO 11357-7:2015)

Plastiques - Analyse calorimétrique différentielle (DSC) - Partie 7: Détermination de la cinétique de cristallisation (ISO 11357-7:2015)

Kunststoffe - Dynamische Differenz-Thermoanalyse (DSC) - Teil 7: Bestimmung der Kristallisationskinetik (ISO 11357-7:2015)

This European Standard was approved by CEN on 31 July 2015.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

European foreword

This document (EN ISO 11357-7:2015) has been prepared by Technical Committee ISO/TC 61 "Plastics" in collaboration with Technical Committee CEN/TC 249 "Plastics" the secretariat of which is held by NBN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2016, and conflicting national standards shall be withdrawn at the latest by March 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 11357-7:2013.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 11357-7:2015 has been approved by CEN as EN ISO 11357-7:2015 without any modification.

1 Scope Normative references 3 Terms and definitions	iv
Normative references Terms and definitions	
3 Terms and definitions	
4 Principle	1
	2
5 Apparatus and materials	2
6 Test specimens	2
7 Test conditions and specimen conditi	oning2
8 Calibration	2
9.1 General 9.2 Loading the test specimen into the 9.3 Insertion of the crucibles into the 9.4 Melting of the polymer 9.5 Isothermal crystallization	ne crucible 3 instrument 3 3 4
10.1 General	5 stallization kinetics 5 n 5 zation 7
11 Precision	8
12 Test report	8
Annex A (informative) Equations for crystalli	zation kinetics of polymers9
Bibliography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: <u>Foreword - Supplementary information</u>.

The committee responsible for this document is ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*.

This second edition cancels and replaces the first edition (ISO 11357-7:2002), which has been technically revised with the following changes:

- a) values to be recorded for isothermal crystallization revised, starting time of the isothermal step (t = 0) added (10.2.1), and Figure 2 to Figure 6 revised accordingly;
- b) Formula (A.1) and Formula (A.2) are corrected;
- c) dated references changed to undated references.

ISO 11357 consists of the following parts, under the general title *Plastics — Differential scanning calorimetry (DSC)*:

- Part 1: General principles
- Part 2: Determination of glass transition temperature and glass transition step height
- Part 3: Determination of temperature and enthalpy of melting and crystallization
- Part 4: Determination of specific heat capacity
- Part 5: Determination of characteristic reaction-curve temperatures and times, enthalpy of reaction and degree of conversion
- Part 6: Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT)
- Part 7: Determination of crystallization kinetics

Plastics — Differential scanning calorimetry (DSC) —

Part 7:

Determination of crystallization kinetics

1 Scope

This part of ISO 11357 specifies two methods (isothermal and non-isothermal) for studying the crystallization kinetics of partially crystalline polymers using differential scanning calorimetry (DSC).

It is only applicable to molten polymers.

NOTE These methods are not suitable if the molecular structure of the polymer is modified during the test.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics — Vocabulary

ISO 11357-1, Plastics — Differential scanning calorimetry (DSC) — Part 1: General principles

ISO 11357-3, Plastics — Differential scanning calorimetry (DSC) — Part 3: Determination of temperature and enthalpy of melting and crystallization

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 472, ISO 11357-1, ISO 11357-3, and the following apply.

3 1

crystallization kinetics

description of the rate of crystallization of a material taking into account the effects of variables such as time, temperature, pressure, stress, and molecular structure

Note 1 to entry: These factors and also any additives, fillers, or contaminants can modify the crystallinity of the polymer at the end of crystallization.

3.2

relative crystallinity

α

ratio between the crystallinity at a particular point in time or a particular temperature and the crystallinity at the end of crystallization

Note 1 to entry: The relative crystallinity can be expressed either as a ratio or as a percentage if multiplied by 100.

Note 2 to entry: In DSC, the relative crystallinity can be determined as the ratio between the partial area of the crystallization peak, at each time or each temperature, and the total area of the peak.