INTERNATIONAL STANDARD

Quantities and units -

Part 2:

Mathematical signs and symbols to be used in the natural sciences and technology

Grandeurs et unités -

Partie 2: Signes et symboles mathématiques à employer dans les sciences de la nature et dans la technique

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 - CH-1211 Geneva 20
Tel. + 41227490111
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Contents

Foreword iv
Introduction vi
1 Scope.1
2 Normativereferences 1
3 Variables, functions, and operators 1
4 MathematicalPogic 3
5 Sets 4
6 Standard number sets and intervals 6
7 Miscellaneous signs andsymbols 8
8 Elementary geometry 10
9 Operations 11
10 Combinatorics 14
11 Functions 15
12 Exponential and logarithmic functions 18
13 Circular and hyperbolic functions 19
14 Complex numbers 21
15 Matrices 22
16 Coordinate systems 24
17 Scalars, vectors, and tensors 26
18 Transforms 30
19 Special functions 31
Annex A (normative) Clarification of the symbols used 36
Bibliography 40

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in Haison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical/Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical commatees is to prepare International Standards. Draft International Standards adopted by the technical commitees are circulated to the member bodies for voting. Publication as an International Standard requires approd by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for Identifying any or all such patent rights.

ISO 80000-2 was prepared by Technical Conifittee ISO/TC 12, Quantities and units, in collaboration with IEC/TC 25, Quantities and units.

This first edition cancels and replaces ISO 31-11-1992, which has been technically revised. The major technical changes from the previous standard are the following:

- Four clauses have been added, i.e. "Standard number sets and intervals", "Elementary geometry", "Combinatorics" and "Transforms".

ISO 80000 consists of the following parts, under the general title Quantities and units:

- Part 1: General
- Part 2: Mathematical signs and symbols to be used in the natural sciences and technology1)
- Part 3: Space and time
- Part 4: Mechanics
- Part 5: Thermodynamics
- Part 7: Light
- Part 8: Acoustics

- Part 9: Physical chemistry and molecular physics
- Part 10: Atomic and nuclear physics
- Part 11: Characteristic numbers
- Part 12: Solid state physics

[^0]IEC 80000 consists of the following parts, under the general title Quantities and units:

- Part 6: Electromagnetism
- Part 13: Information science and technology
- Part 14: Telebiometrics related to human physiology

Introduction

Arrangement of the tables

The first column "Item No." of the tables contains the number of the item, followed by either the number of the corresponding item in ISO 31-11 in parentheses, or a dash when the item in question did not appear in ISO 31-11.

The second column "Sign, sbmbol, expression" gives the sign or symbol under consideration, usually in the context of a typical expression more than one sign, symbol or expression is given for the same item, they are on an equal footing. In song cases, e.g. for exponentiation, there is only a typical expression and no symbol.

The third column "Meaning, verbal equitalent" gives a hint on the meaning or how the expression may be read. This is for the identification of the concerf is not intended to be a complete mathematical definition.

The fourth column "Remarks and examples gives further information. Definitions are given if they are short enough to fit into the column. Definitions need pot be mathematically complete.

0
The arrangement of the table in Clause 16 "Coorditgte systems" is somewhat different.

Quantities and units -

Part 2:

Mathematical signs and symbols to be used in the natural sciences and technology

1 Scope

ISO 80000-2 gives general Ifformation about mathematical signs and symbols, their meanings, verbal equivalents and applications.

The recommendations in ISO 80000-2 are intended mainly for use in the natural sciences and technology, but also apply to other areas where mathenatics is used.

2 Normative references

The following referenced documents are indisensable for the application of this document. For dated references, only the edition cited applies. For amdated references, the latest edition of the referenced document (including any amendments) applies.

ISO 80000-1:-2), Quantities and units - Part 1: General

3 Variables, functions and operators

Variables such as x, y, etc., and running numbers, such as $i \Sigma_{i} x_{i}$ are printed in italic (sloping) type. Parameters, such as a, b, etc., which may be considered as constant in a particular context, are printed in italic (sloping) type. The same applies to functions in general, e.g. f, g

An explicitly defined function not depending on the context is, however, phted in Roman (upright) type, e.g. $\sin , \exp , \operatorname{In}, \Gamma$. Mathematical constants, the values of which never change, are printed in Roman (upright) type, e.g. $\mathrm{e}=2,7182188 \ldots ; \pi=3,141592 \ldots ; \mathrm{i}^{2}=-1$. Well-defined operators are alsa printed in Roman (upright) style, e.g. div, δ in δx and each d in $\mathrm{d} f / \mathrm{d} x$.

Numbers expressed in the form of digits are always printed in Roman (upright) style g.g. 351 204; 1,32; 7/8.
The argument of a function is written in parentheses after the symbol for the function, without a space between the symbol for the function and the first parenthesis, e.g. $f(x), \cos (\omega t+\varphi)$. If the symbol for the function consists of two or more letters and the argument contains no operation symbol, such as,,$+- \times, \cdot$ or $/$, the parentheses around the argument may be omitted. In these cases, there should be a thin space between the symbol for the function and the argument, e.g. int 2,4 ; $\sin n \pi$; arcosh $2 A$; Ei x.

If there is any risk of confusion, parentheses should always be inserted. For example, write $\cos (x)+y$; do not write $\cos x+y$, which could be mistaken for $\cos (x+y)$.
2) To be published. (Revision of ISO 31-0:1992)

[^0]: 1) Title to be shortened to read "Mathematics" in the second edition of ISO 80000-2.
