EESTI STANDARD

EVS-EN ISO 6259-1:2015

Thermoplastics pipes - Determination of tensile properties - Part 1: General test method (ISO 6259-1:2015)

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

5.			
See Eesti standard EVS-EN ISO 6259-1:2015 sisaldab Euroopa standardi EN ISO 6259-1:2015 ingliskeelset teksti.			
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.		
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 08.04.2015.	Date of Availability of the European standard is 08.04.2015.		
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.		

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 23.040.20

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; koduleht <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Aru 10, 10317 Tallinn, Estonia; homepage <u>www.evs.ee</u>; phone +372 605 5050; e-mail <u>info@evs.ee</u>

EUROPEAN STANDARD NORME EUROPÉENNE

EUROPÄISCHE NORM

EN ISO 6259-1

April 2015

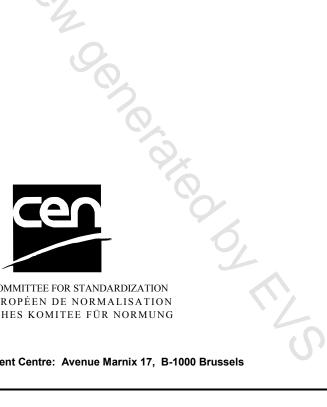
ICS 23.040.20

Supersedes EN ISO 6259-1:2001

English Version

Thermoplastics pipes - Determination of tensile properties - Part 1: General test method (ISO 6259-1:2015)

Tubes en matières thermoplastiques - Détermination des caractéristiques en traction - Partie 1: Méthode générale d'essai (ISO 6259-1:2015)


Rohre aus Thermoplasten - Bestimmung der Eigenschaften im Zugversuch - Teil 1: Allgemeines Prüfverfahren (ISO 6259-1:2015)

This European Standard was approved by CEN on 12 December 2014.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Świtzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Foreword

This document (EN ISO 6259-1:2015) has been prepared by Technical Committee ISO/TC 138 "Plastics pipes, fittings and valves for the transport of fluids" in collaboration with Technical Committee CEN/TC 155 "Plastics piping systems and ducting systems" the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2015, and conflicting national standards shall be withdrawn at the latest by October 2015.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 6259-1:2001.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

JINL JY CEN as . The text of ISO 6259-1:2015 has been approved by CEN as EN ISO 6259-1:2015 without any modification.

Contents

Forew	vord		iv
Intro	ductior	n	v
1	Scope	е	
2	Norm	native reference	1
3	3.1	s and definitions Geometric definitions Definitions related to material characteristics	
4	Princ	iple	3
5	Appa	ratus	
6	6.1 6.2	Pieces Type of the test piece. Preparation of test pieces. 6.2.1 Sampling from the pipe. 6.2.2 Selection of test pieces.	4 4 5
_	6.3	Checking test pieces	
7		itioningspeed	
8		edure	
9 10		ession of results	
10	10.1 10.2 10.3 10.4	Stress at yield Elongation at break Statistical parameters Retests	7 7 7 7
11	Test r	report	8
Biblic	ography		9

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <u>www.iso.org/directives</u>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <u>www.iso.org/patents</u>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information.

The committee responsible for this document is ISO/TC 138, *Plastics pipes, fittings, and valves for the* transport of fluids, Subcommittee SC 5, General properties of pipes, fittings, and valves of plastic materials and their accessories — Test methods and basic specifications.

This second edition cancels and replaces the first edition (ISO 6259-1:1997), which has been technically revised.

ISO 6259 consists of the following parts, under the general title *Thermoplastics pipes* — *Determination* of tensile properties:

- Part 1: General test method
- Part 2: Pipes made of unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C), and high-impact poly (vinyl chloride) (PVC-HI)
- Part 3: Polyolefin pipes

Introduction

This part of ISO 6259 specifies a short-term tensile test method for determining the tensile properties of thermoplastics pipes.

It can provide data for further testing for the purpose of research and development.

It cannot be regarded as significant for applications in which the conditions of application of the force differ considerably with those in this test method, such as applications requiring the appropriate impact, creep, and fatigue tests.

The tests of tensile properties are intended to be principally regarded as tests of material in the form of pipe. The results can be useful as a material process control test but are not a quantitative assessment of long-term pipe performance.

ISO 6259 has been drawn up on the basis of ISO 527.[1][2]

For ease of use, it has been thought preferable to draw up a complete document that can be used for determining the tensile properties of thermoplastics pipes. For greater detail, reference can be made to ISO 527.[1][2]

However, let it be noted that ISO 527^{[1][2]} is applicable to materials in sheet form, whereas ISO 6259 is applicable to materials in pipe form.

As it was considered essential to test the pipes as supplied, i.e. without reduction in thickness, difficulties are those in the choice of test piece.

ISO 527^{[1][2]} specifies test pieces a few millimetres thick, whereas the thickness of a pipe can be in excess of 50 mm. This is why certain changes have been made on this point.

For thin-walled pipes, the test piece can be obtained by die cutting, while for thick pipes, it can be obtained only by machining.

At present, ISO 6259 comprises three parts. The first part gives the general conditions under which the tensile properties of thermoplastics pipes are to be determined. The other two parts provide, respectively, particular information on the execution of tests on pipe made from different materials (see the Foreword).

The basic specifications for the various materials are given in informative annexes in the relevant parts.

Thermoplastics pipes — Determination of tensile properties —

Part 1: General test method

1 Scope

The ISO 6259 series specifies a method of determining the tensile properties of thermoplastics pipes, including the following properties:

- stress at yield;
- elongation at break.

This part of ISO 6259 is applicable to all types of thermoplastics pipe, regardless of their intended use.

2 Normative reference

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1167-1:2006, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 2602, Statistical interpretation of test results — Estimation of the mean — Confidence interval

ISO 5893, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Specification

ISO 6259-2:1997, Thermoplastics pipes — Determination of tensile properties — Part 2: Pipes made of unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) and high-impact poly (vinyl chloride) (PVC-HI)

ISO 6259-3:2015, Thermoplastics pipes — Determination of tensile properties — Part 3: Polyolefin pipes

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 Geometric definitions

3.1.1 gauge length at break

distance between the gauge marks on the central part of the test specimen at break

Note 1 to entry: It is expressed in millimetres (mm).

3.1.2

initial cross-section

Α

product of initial width and thickness of a test specimen (i.e. *A* = *bh*)

Note 1 to entry. It is expressed in square millimetres (mm²).

3.1.3

initial gauge length

 L_0

initial distance between the gauge marks on the central part of the test specimen

Note 1 to entry: It is expressed in millimetres (mm).

Note 2 to entry: The values of the gauge length that are indicated for the specimen types in the different parts of ISO 527[1][2] represent the relevant maximum gauge length.

3.1.4

nominal outside diameter

dn

specified outside diameter, assigned to a nominal size DN/OD

Note 1 to entry: It is expressed in millimetres (mm).

3.1.5 nominal size DN/OD

numerical designation of the size of a component, other than a component designated by thread size, which is a convenient round number, approximately equal to the manufacturing dimension, related to the outside diameter

Note 1 to entry: It is expressed in millimetres (mm).

3.1.6

nominal wall thickness en

numerical designation of the wall thickness of a component, which is a convenient round number, approximately equal to the manufacturing dimension

Note 1 to entry: It is expressed in millimetres (mm).

Note 2 to entry: For thermoplastics components, the value of the nominal wall thickness, e_n , is identical to the specified minimum wall thickness at any point, e_{\min} .

3.1.7

thickness

h

smaller initial dimension of the rectangular cross section in the central part of a test specimen

Note 1 to entry: It is expressed in millimetres (mm).

3.1.8 width

b

larger initial dimension of the rectangular cross section in the central part of a test specimen

Note 1 to entry: It is expressed in millimetres (mm).

3.2 Definitions related to material characteristics

3.2.1 elongation at break

 $\varepsilon_{\rm b}$ calculated from the gauge length at break

Note 1 to entry: It is expressed as a percentage (%).

3.2.2 force at yield *F* force measured at yield

Note 1 to entry: It is expressed in Newtons (N).

3.2.3

stress at yield

 $\sigma_{
m y}$ stress measured at the yield strain

Note 1 to entry: It is expressed in megapascals (MPa).

3.2.4

yield

transition from elastic to plastic deformation usually characterised by a decrease or shoulder in the stress-strain curve

4 Principle

Test pieces of given shape and dimensions are obtained from a thermoplastics pipe, in the longitudinal direction, by cutting or machining.

The tensile properties are measured using a test machine under specified conditions.

5 Apparatus

5.1 Tensile-testing machine, complying with ISO 5893 and meeting the specifications given in <u>5.2</u>, <u>5.3</u>, and <u>5.4</u>.

NOTE The use of computer-controlled machines in accordance with ISO 527-1:2012^[1] is an option.

5.2 Grips, for holding the test piece and attached to the machine so that the major axis of the test piece coincides with the direction of pull through the centreline of the assembly. This can be achieved, for example, by using pins in the grips to centre.

The test piece shall be held such that slip relative to the grips is prevented as far as possible and this shall be carried out with the type of grip that maintains or increases pressure on the test piece as the force applied to the test piece increases.

The clamping system shall not cause premature fracture of the test piece at the grips.

It might be necessary to pre-stress the test specimen to obtain correct alignment and specimen seating and to avoid any irregularity at the start of the stress/strain diagram.

5.3 Load indicator, incorporating a mechanism capable of showing the total tensile load carried by the test piece when held by the grips. The mechanism shall be essentially free from inertia lag at the specified rate of testing and shall indicate the load with an accuracy of within 1 % of the actual value. Attention is drawn to ISO 5893 and to ISO 7500-1[4].

5.4 Extensometer, suitable for determining the gauge length of the test piece at any moment during the test.

The instrument shall be essentially free from inertia lag at the specified test speeds and shall be capable of measuring deformation to an accuracy of within 1 %. When a mechanical extensometer is used, this shall be fixed to the test piece in such a way that the test piece does not undergo any damage and distortion and no slip occurs between it and the extensometer.

The measurement of elongation of the test piece on the basis of the movement of the grips lacks accuracy and shall be avoided whenever possible.

NOTE It is desirable, but not essential, for this instrument to record this length, or any variation in it, automatically as a function of the stress in the test piece.

5.5 Micrometer or equivalent, capable of reading to 0,01 mm or less and suitable for measuring the thickness and width of the test piece.

5.6 Cutting die, conforming to the relevant profile in ISO 6259-2:1997 or ISO 6259-3:2015, as applicable.

5.7 Milling machine and cutter, capable of producing the test piece specified in ISO 6259-2:1997 or ISO 6259-3:2015, as applicable.

6 Test Pieces

6.1 Type of the test piece

The test pieces shall conform to the relevant type specified in ISO 6259-2:1997 or ISO 6259-3:2015 or the relevant product standard, as applicable.

6.2 Preparation of test pieces

6.2.1 Sampling from the pipe

Take sections of pipe of the appropriate length according to the type of test piece to be used.

Cut strips from the pipe section as supplied, i.e. which has not been heated or flattened, so that their axes are parallel to the axis of the pipe. Small diameter pipes might need to be cut and opened to allow the strips to be cut.

Cut strips from the pipe section in such a way that they are equally distributed around the circumference of the pipe as shown in Figure 1, starting from a reference line drawn along the pipe. Cut out one test piece per strip.

The minimum number of test pieces is given in <u>Table 1</u>. When it is not possible to obtain the required number of strips from around the circumference of one pipe section, additional strips shall be taken from another section of the pipe.

Nominal outside diameter, <i>d</i> _n	$15 < d_n \le 32$	$32 < d_{\rm n} \le 63$	>63	
Number of strips	2	3	5	

Table 1 — Minimum number of test pieces