Industrial communication networks - Fieldbus specifications - Part 4-3: Data-link layer protocol eler. specification - Type 3 elements ## **EESTI STANDARDI EESSÕNA** ## **NATIONAL FOREWORD** | See Eesti standard EVS-EN 61158-4-3:2014 | This Estonian standard EVS-EN 61158-4-3:2014 | |--|--| | sisaldab Euroopa standardi EN 61158-4-3:2014 | consists of the English text of the European standard | | inglisekeelset teksti. | EN 61158-4-3:2014. | | Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas. | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation. | | , and the second | Date of Availability of the European standard is 31.10.2014. | | Standard on kättesaadav Eesti Standardikeskusest. | The standard is available from the Estonian Centre for Standardisation. | Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile standardiosakond@evs.ee. ICS 25.040.40, 35.100.20, 35.110 ### Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; www.evs.ee; telefon 605 5050; e-post info@evs.ee ## The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation. If you have any questions about copyright, please contact Estonian Centre for Standardisation: Aru 10, 10317 Tallinn, Estonia; www.evs.ee; phone 605 5050; e-mail info@evs.ee # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 61158-4-3 October 2014 ICS 25.040.40; 35.100.20; 35.110 Supersedes EN 61158-4-3:2012 ### **English Version** Industrial communication networks - Fieldbus specifications - Part 4-3: Data-link layer protocol specification - Type 3 elements (IEC 61158-4-3:2014) Réseaux de communication industriels - Spécifications des bus de terrain - Partie 4-3: Spécification du protocole de la couche liaison de données - Éléments de type 3 (CEI 61158-4-3:2014) Industrielle Kommunikationsnetze - Feldbusse - Teil 4-3: Protokollspezifikation des Data Link Layer (Sicherungsschicht) - Typ 3-Elemente (IEC 61158-4-3:2014) This European Standard was approved by CENELEC on 2014-09-19. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels ### Foreword The text of document 65C/762/FDIS, future edition 3 of IEC 61158-4-3, prepared by SC 65C "Industrial networks" of IEC/TC 65 "Industrial-process measurement, control and automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61158-4-3:2014. The following dates are fixed: | • | latest date by which the document has
to be implemented at national level by
publication of an identical national
standard or by endorsement | (dop) | 2015-06-19 | |---|---|-------|------------| | • | latest date by which the national standards conflicting with the document have to be withdrawn | (dow) | 2017-09-19 | This document supersedes EN 61158-4-3:2012 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association. ## **Endorsement notice** The text of the International Standard IEC 61158-4-3:2014 was approved by CENELEC as a European Standard without any modification. In the official version, for bibliography, the following notes have to be added for the standards indicated: | IEC 60870-5-1 | NOTE | Harmonised as EN 60870-5-1 | |---------------|------|----------------------------| | IEC 61158-1 | NOTE | Harmonised as EN 61158-1 | | IEC 61158-5-3 | NOTE | Harmonised as EN 61158-5-3 | | IEC 61158-6-3 | NOTE | Harmonised as EN 61158-6-3 | | IEC 61784-1 | NOTE | Harmonised as EN 61784-1 | | IEC 61784-2 | NOTE | Harmonised as EN 61784-2 | # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|--------------|-------------| | IEC 61131-3 | - | Programmable controllers Part 3: Programming languages | EN 61131-3 | - | | IEC 61158-2 | 2014 | Industrial communication networks - Fieldbus specifications Part 2: Physical layer specification and service definition | | 2014 | | IEC 61158-3-3 | - | Industrial communication networks - Fieldbus specifications Part 3-3: Data-link layer service definition - Type 3 elements | EN 61158-3-3 | - | | ISO/IEC 2022 | - | Information technology - Character code structure and extension techniques | - | - | | ISO/IEC 7498-1 | - | Information technology - Open Systems
Interconnection - Basic reference model: The
basic model | - | - | | ISO/IEC 7498-3 | - | Information technology - Open Systems
Interconnection - Basic reference model:
Naming and addressing | - | - | | ISO/IEC 10731 | - | Information technology - Open Systems
Interconnection - Basic Reference Model -
Conventions for the definition of OSI services | - | - | | ISO 1177 | - | Information processing - Character structure for start/stop and synchronous character-oriented transmission | CO | - | | | | | 2 | | | | | | | | | | | | | 5 | # CONTENTS | FU | REW | JRD | ο | |-----|------|--|----| | IN7 | ROD | UCTION | 8 | | 1 | Scop | oe | 9 | | | 1.1 | General | 9 | | | 1.2 | Specifications | 9 | | | 1.3 | Procedures | 9 | | | 1.4 | Applicability | 9 | | | 1.5 | Conformance | 10 | | 2 | Norn | native references | 10 | | 3 | Term | ns, definitions, symbols and abbreviations | 10 | | | 3.1 | Reference model terms and definitions | 10 | | | 3.2 | Service convention terms and definitions | 12 | | | 3.3 | Common terms and definitions | 13 | | | 3.4 | Additional Type 3 definitions | 15 | | | 3.5 | Common symbols and abbreviations | 17 | | | 3.6 | Type 3 symbols and abbreviations | 18 | | 4 | Com | mon DL-protocol elements | 22 | | | 4.1 | Frame check sequence | 22 | | 5 | Over | view of the DL-protocol | | | | 5.1 | General | 25 | | | 5.2 | Overview of the medium access control and transmission protocol | 25 | | | 5.3 | Transmission modes and DL-entity | | | | 5.4 | Service assumed from the PhL | 31 | | | 5.5 | Operational elements | | | | 5.6 | Cycle and system reaction times | 50 | | 6 | Gene | eral structure and encoding of DLPDUs, and related elements of procedure | 53 | | | 6.1 | DLPDU granularity | 53 | | | 6.2 | Length octet (LE, LEr) | 54 | | | 6.3 | Address octet | | | | 6.4 | Control octet (FC) | 57 | | | 6.5 | DLPDU content error detection | | | | 6.6 | DATA_UNIT | | | | 6.7 | Error control procedures | | | 7 | DLPI | DU-specific structure, encoding and elements of procedure | 63 | | | 7.1 | DLPDUs of fixed length with no data field | 63 | | | 7.2 | DLPDUs of fixed length with data field | 65 | | | 7.3 | DLPDUs with variable data field length | 67 | | | 7.4 | Token DLPDU | 68 | | | 7.5 | ASP DLPDU | 69 | | | 7.6 | SYNCH DLPDU | | | | 7.7 | Time Event (TE) DLPDU | 69 | | | 7.8 | Clock Value (CV) DLPDU | 70 | | | 7.9 | Transmission procedures | 70 | | 8 | Othe | r DLE elements of procedure | 73 | | | 8.1 | DL-entity initialization | 73 | | | 8.2 | States of the media access control of the DL-entity | 74 | | _ | Clock synchronization protocol | | |--|--|----------------------------| | Annex A | (normative) DL-Protocol state machines | 85 | | A.1 | Overall structure | 85 | | A.2 | Variation of state machines in different devices | 86 | | A.3 | DL Data Resource | 87 | | A.4 | FLC / DLM | | | | A.4.1 Primitive definitions | | | | A.4.2 State machine description | | | A.5 | MAC | | | | A.5.1 Primitive definitions | | | A.6 | A.5.2 State machine description | | | A.0 | A.6.1 Overview | | | | A.6.2 Character send SM(CTX) | | | | A.6.3 Character receive SM (CRX) | | | | A.6.4 Timer-SM (TIM) | | | | A.6.5 Primitive definition of SRC | | | | A.6.6 State machine description | 145 | | Annex B | (informative) Type 3 (synchronous): exemplary FCS implementations | 160 | | | (informative) Type 3: Exemplary token procedure and message transfer ds | 162 | | | Procedure of token passing | | | C.1 | Examples for token passing procedure | | | C.3 | Examples for message transfer periods – asynchronous transmission | | | | phyphy | | | | | | | | | | | Figure 1 | – Relationships of DLSAPs, DLSAP-addresses and group DL-addresses | 14 | | | Relationships of DLSAPs, DLSAP-addresses and group DL-addresses Logical token-passing ring | | | Figure 2 | – Logical token-passing ring | 28 | | Figure 2 · Figure 3 · | Logical token-passing ring PhL data service for asynchronous transmission | 28 | | Figure 2 · Figure 3 · Figure 4 · | – Logical token-passing ring
– PhL data service for asynchronous transmission
– Idle time T _{ID1} | 28
32 | | Figure 2 - Figure 3 - Figure 4 - Figure 5 - | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) | 28
32
37 | | Figure 2 Figure 3 Figure 5 Figure 6 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) | 32
37
38 | | Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 | - Logical token-passing ring - PhL data service for asynchronous transmission - Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} | 28
37
38
38 | | Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) Slot time T_{SL1} Slot time T_{SL2} | 2837383839 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 7 - Figure 8 - Figure 9 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) Slot time T_{SL1} Slot time T_{SL2} Slot time T_{SL1} | 28
37
38
39
39 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 7 - Figure 8 - Figure 9 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) Slot time T_{SL1} Slot time T_{SL2} | 28
37
38
39
39 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 8 - Figure 9 - Figure 10 - Figure 11 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) Slot time T_{SL1} Slot time T_{SL2} Slot time T_{SL1} Slot time T_{SL2} Token transfer period | 28373839394450 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 8 - Figure 9 - Figure 10 - Figure 11 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) Slot time T_{SL1} Slot time T_{SL2} Slot time T_{SL1} Slot time T_{SL1} | 28373839394450 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 8 - Figure 9 - Figure 10 - Figure 11 - Figure 11 - Figure 12 | Logical token-passing ring PhL data service for asynchronous transmission Idle time T_{ID1} Idle time T_{ID2} (SDN, CS) Idle time T_{ID2} (MSRD) Slot time T_{SL1} Slot time T_{SL2} Slot time T_{SL1} Slot time T_{SL2} Token transfer period | 28373839394450 | | Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 | - Logical token-passing ring - PhL data service for asynchronous transmission - Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} - Slot time T _{SL2} - Slot time T _{SL2} - Token transfer period 2 - Message transfer period 3 - UART character | 2832373839445051 | | Figure 2 - Figure 3 - Figure 5 - Figure 7 - Figure 8 - Figure 9 - Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 | - Logical token-passing ring - PhL data service for asynchronous transmission - Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} - Slot time T _{SL2} - Slot time T _{SL2} - Slot time T _{SL2} - Token transfer period 2 - Message transfer period 3 - UART character | 2832373839445051 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 8 - Figure 9 - Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 | - Logical token-passing ring - PhL data service for asynchronous transmission - Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} - Slot time T _{SL2} - Ose transfer period - Ose transfer period - Octet structure - Octet structure - Length octet coding | 283237383944505153 | | Figure 2 Figure 3 Figure 5 Figure 5 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 15 Figure 15 Figure 16 | - Logical token-passing ring - PhL data service for asynchronous transmission Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} - Slot time T _{SL2} - Slot time T _{SL2} - Slot time T _{SL2} - Token transfer period 2 - Message transfer period 3 - UART character 4 - Octet structure 5 - Length octet coding | 283738394450515454 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 8 - Figure 10 Figure 11 Figure 12 Figure 12 Figure 14 Figure 15 Figure 15 Figure 17 F | - Logical token-passing ring - PhL data service for asynchronous transmission - Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} - Slot time T _{SL2} - Slot time T _{SL2} - Slot time T _{SL2} - Token transfer period 2 - Message transfer period 3 - UART character 4 - Octet structure 5 - Length octet coding 6 - Address octet coding | 28323738394450515454 | | Figure 2 - Figure 3 - Figure 5 - Figure 6 - Figure 8 - Figure 9 - Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 | - Logical token-passing ring - PhL data service for asynchronous transmission Idle time T _{ID1} - Idle time T _{ID2} (SDN, CS) - Idle time T _{ID2} (MSRD) - Slot time T _{SL1} - Slot time T _{SL2} - Slot time T _{SL2} - Slot time T _{SL2} - Token transfer period 2 - Message transfer period 3 - UART character 4 - Octet structure 5 - Length octet coding | 283237383939445051535455 | | Figure 21 – FCS octet coding | 61 | |---|-----| | Figure 22 – Data field | 62 | | Figure 23 – Ident user data | 62 | | Figure 24 – DLPDUs of fixed length with no data field | 64 | | Figure 25 – DLPDUs of fixed length with no data field | 65 | | Figure 26 – DLPDUs of fixed length with data field | 66 | | Figure 27 - DLPDUs of fixed length with data field | 66 | | Figure 28 – DLPDUs with variable data field length | 67 | | Figure 29 – DLPDUs with variable data field length | | | Figure 30 – Token DLPDU | 68 | | Figure 31 – Token DLPDU | 69 | | Figure 32 – Send/request DLPDU of fixed length with no data | 70 | | Figure 33 - Token DLPDU and send/request DLPDU of fixed length with data | 71 | | Figure 34 – Send/request DLPDU with variable data field length | 71 | | Figure 35 – Send/request DLPDU of fixed length with no data | 72 | | Figure 36 - Token DLPDU and send/request DLPDU of fixed length with data | 72 | | Figure 37 – Send/request DLPDU with variable data field length | 73 | | Figure 38 – DL-state-diagram | 75 | | Figure 39 – Overview of clock synchronization | 81 | | Figure 40 – Time master state machine | 82 | | Figure 41 – Time receiver state machine | 83 | | Figure 42 – Clock synchronization | 84 | | Figure A.1 – Structuring of the protocol machines | 86 | | Figure A.2 – Structure of the SRU Machine | 142 | | Figure B.1 – Example of FCS generation for Type 3 (synchronous) | 160 | | Figure B.2 – Example of FCS syndrome checking on reception for Type 3 (synchronous) | 160 | | Figure C.1 – Derivation of the token holding time (T _{TH}) | | | Figure C.2 – No usage of token holding time (T _{TH}) | | | Figure C.3 – Usage of token holding time (T _{TH}) for message transfer (equivalence between T _{TH} of each Master station) | | | Figure C.4 – Usage of token holding time (T _{TH}) in different working load situations | | | Figure C.4 – Usage of token floiding time (1 [H) in different working load situations | 107 | | Table 1 – FCS length, polynomials and constants by Type 3 synchronous | 23 | | Table 2 – Characteristic features of the fieldbus data-link protocol | 25 | | Table 3 – Transmission function code | 59 | | Table 4 – FCB, FCV in responder | 60 | | Table 5 – Operating parameters | 73 | | Table A.1 – Assignment of state machines | | | Table A.2 – Data resource | 88 | | Table A.3 – Primitives issued by DL-User to FLC | 91 | | Table A.4 – Primitives issued by FLC to DL-User | 92 | | Table A.5 – Primitives issued by DL-User to DLM | | | Table A 6 – Primitives issued by DLM to DL-User | 94 | | able A.7 – Parameters used with primitives exchanged between DL-User and FLC | 95 | |--|-----| | able A.8 – Parameters used with primitives exchanged between DL-User and DLM | 95 | | able A.9 – FLC/DLM state table | 96 | | able A.10 – FLC / DLM function table | | | able A.11 – Primitives issued by DLM to MAC | | | able A.12 – Primitives issued by MAC to DLM | | | able A.13 – Parameters used with primitives exchanged between DLM and MAC | | | able A.14 – Local MAC variables | 116 | | able A.15 – MAC state table | | | able A.16 – MAC function table | | | able A.17 – Primitives issued by DLM to SRC | | | able A.18 – Primitives issued by SRC to DLM | | | able A.19 – Primitives issued by MAC to SRC | | | able A.20 – Primitives issued by SRC to MAC | | | able A.21 – Parameters used with primitives exchanged between MAC and SRC | | | able A.22 – FC structure | | | able A.23 – Local variables of SRC | | | able A.24 – SRC state tableable A.25 – SRC functions | | | able A.25 – SRC functions | | | | | ## INTRODUCTION This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC 61158-1. The data-link protocol provides the data-link service by making use of the services available from the physical layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer data-link entities (DLEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes: - a) as a guide for implementors and designers; - b) for use in the testing and procurement of equipment; - c) as part of an agreement for the admittance of systems into the open systems environment; - d) as a refinement to the understanding of time-critical communications within OSI. This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems may work together in any combination. NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type combinations as specified explicitly in its profile parts. Use of the various protocol types in other combinations may require permission from their respective intellectual-property-right holders. The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning Type 3 elements and possibly other types given in the normative elements of this standard. The following patent rights for Type 3 have been announced by [SI]: | Publication | Title | |-------------|------------------------------| | EP 1253494 | Control device with fieldbus | | | | IEC takes no position concerning the evidence, validity and scope of these patent rights. The holder of these patent rights has assured IEC that he/she is willing to negotiate licenses either free of charge or under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of these patent rights is registered with IEC. Information may be obtained from: [SI]: Siemens AG CT IP M&A Otto-Hahn-Ring 6 D-81739 Munich Germany Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights. ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents relevant to their standards. Users are encouraged to consult the databases for the most up to date information concerning patents. # INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – # Part 4-3: Data-link layer protocol specification – Type 3 elements ## 1 Scope #### 1.1 General The data-link layer provides basic time-critical messaging communications between devices in an automation environment. This protocol provides communication opportunities to a pre-selected "master" subset of data-link entities in a cyclic asynchronous manner, sequentially to each of those data-link entities. Other data-link entities communicate only as permitted and delegated by those master data-link entities. For a given master, its communications with other data-link entities can be cyclic, or acyclic with prioritized access, or a combination of the two. This protocol provides a means of sharing the available communication resources in a fair manner. There are provisions for time synchronization and for isochronous operation. #### 1.2 Specifications This standard specifies - a) procedures for the timely transfer of data and control information from one data-link user entity to a peer user entity, and among the data-link entities forming the distributed datalink service provider; - b) the structure of the fieldbus DLPDUs used for the transfer of data and control information by the protocol of this standard, and their representation as physical interface data units. ### 1.3 Procedures The procedures are defined in terms of - a) the interactions between peer DL-entities (DLEs) through the exchange of fieldbus DLPDUs; - b) the interactions between a DL-service (DLS) provider and a DLS-user in the same system through the exchange of DLS primitives; - c) the interactions between a DLS-provider and a Ph-service provider in the same system through the exchange of Ph-service primitives. ## 1.4 Applicability These procedures are applicable to instances of communication between systems which support time-critical communications services within the data-link layer of the OSI or fieldbus reference models, and which require the ability to interconnect in an open systems interconnection environment. Profiles provide a simple multi-attribute means of summarizing an implementation's capabilities, and thus its applicability to various time-critical communications needs.