Railway applications - Aerodynamics -Part 5: Requirements and test procedures for aerodynamics in tunnels

Railway applications - Aerodynamics - Part 5: Requirements and test procedures for aerodynamics in tunnels

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

Käesolev Eesti standard EVS-EN 14067- 5:2006 sisaldab Euroopa standardi EN 14067-5:2006 ingliskeelset teksti.	This Estonian standard EVS-EN 14067- 5:2006 consists of the English text of the European standard EN 14067-5:2006.
Käesolev dokument on jõustatud 20.09.2006 ja selle kohta on avaldatud teade Eesti standardiorganisatsiooni ametlikus väljaandes.	This document is endorsed on 20.09.2006 with the notification being published in the official publication of the Estonian national standardisation organisation.
Standard on kättesaadav Eesti standardiorganisatsioonist.	The standard is available from Estonian standardisation organisation.
D _x	

Käsitlusala: This European Standard applies to the aerodynamic loading caused by trains running in a tunnel.	Scope: This European Standard applies to the aerodynamic loading caused by trains running in a tunnel.
	L. CL
ICS 45.060.01	
Võtmesõnad:	
	TZ S

EUROPEAN STANDARD NORME EUROPÉENNE **EUROPÄISCHE NORM**

EN 14067-5

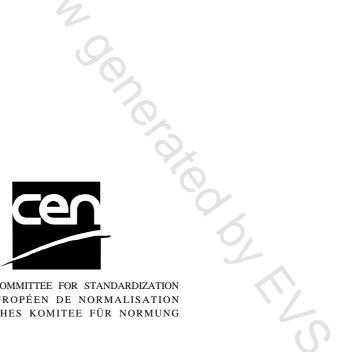
August 2006

ICS 45.060.01

English Version

Railway applications - Aerodynamics - Part 5: Requirements and test procedures for aerodynamics in tunnels

Applications ferroviaires - Aérodynamique - Partie 5: Prescriptions et méthodes d'essai pour aérodynamique en tunnels


Bahnanwendungen - Aerodynamik - Teil 5: Anforderungen und Prüfverfahren für Aerodynamik im Tunnel

This European Standard was approved by CEN on 30 June 2006.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2006 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. EN 14067-5:2006: E

Contents

Forewo	ord	4
1	Scope	5
2	Normative references	5
3	Terms, definitions, symbols and abbreviations	5
4	Methodologies for quantifying the pressure changes in order to meet the medical health criterion	
4.1 4.2	General Train-tunnel-pressure signature	
4.3	Maximum pressure changes	
5	Pressure loading on unsealed crossing trains	10
6	Pressure loading on sealed trains in tunnels	
6.1 6.2	General	12
6.3	Single train case Two train case	13
Annex	A (informative) Predictive equations	
	B (informative) Pressure comfort criteria	
Annex	C (informative) Micro-pressure wave	29
Annex	ZA (informative) Relationship between this European Standard and the Essential Requirements of EU Directive 96/48/EC	32
Bibliog	Jraphy	33

Figure 1 — Train-tunnel-pressure signature at a fixed position in a tunnel (detail)6
Figure 2 — Train-tunnel-pressure signature at an exterior position just behind the nose of the train7
Figure 3 — External pressure drop due to the head passage of a crossing train10
Figure 4 — Internal pressure evolution inside an unsealed vehicle due to the head passage of a crossing train
Figure 5 — Pressure differences on an unsealed vehicle due to the head passage of a crossing train
Figure 6 — Typical measured maximum forces on a freight wagon door during the head passage of a crossing train
Figure 7 — Pressure difference on a well sealed train in two successive tunnels
Figure 8 — External pressure histories at different speeds in two successive tunnels
Figure 9 — Influence of tunnel length on maximum external pressure variation14
Figure 10 — Influence of the relative entry time $\Delta t_{1,2}$ on maximum absolute values of pressure differences for a particular situation
Figure 11 — Example scenario for train crossings during 1,5 h of scheduled traffic on a high speed line with 6 trains in circulation passing 6 tunnels which cover 10 % of the line length

igure 12 — Effect of time schedule variation on the number of train crossings in tunnels for a particular train
igure 13 — Calculated pressure trace and resulting pressure loadings above 500 Pa (arrowed)
Figure 14 — Pressure loadings for two different crossing frequency scenarios
igure A.1 — Calculation of a train-tunnel-pressure signature
Figure A.2 — Solutions X_{fr} of equation (A.13) for different values of $\zeta = \zeta_h + \zeta_{fr}$
Figure A.3 – Solution X _t of equation (A.18) for different values of $\zeta_1 = \zeta_h + \zeta_{fr} + \zeta_t$ with $\zeta_E = 0,5$
igure A.4 — Aerodynamic drag coefficient27
igure C.1 — Wave generation, propagation and radiation
igure C.2 — Steepening in concrete slab tunnels
igure C.3 — Radiation of micro pressure wave31
igure C.3 — Radiation of micro pressure wave

Foreword

This document (EN 14067-5:2006) has been prepared by Technical Committee CEN/TC 256 "Railway applications", the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2007, and conflicting national standards shall be withdrawn at the latest by February 2007.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive 96/48/EC as amended by Directive 2004/50/EC.

For relationship with EU Directive, see informative Annex ZA, which is an integral part of this document.

This European Standard is part of the series "*Railway applications — Aerodynamics*" which consists of the following parts:

- Part 1: Symbols and units
- Part 2: Aerodynamics on open track
- Part 3: Aerodynamics in tunnels
- Part 4: Requirements and test procedures for aerodynamics on open track
- Part 5: Requirements and test procedures for aerodynamics in tunnels
- Part 6: Cross wind effects on railway operation

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

1 Scope

This European Standard applies to the aerodynamic loading caused by trains running in a tunnel.

2 Normative references

The following referenced document is indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 14067-1:2003, Railway applications — Aerodynamics — Part 1: Symbols and units

3 Terms, definitions, symbols and abbreviations

For the purposes of this document, the terms, definitions, symbols and abbreviations given in EN 14067-1:2003 and the following apply.

NOTE Additional definitions, symbols and abbreviations are explained in the text.

3.1

tunnel

closed structure enveloping track(s) with a length of more than 20 m

4 Methodologies for quantifying the pressure changes in order to meet the medical health criterion

4.1 General

The relevant pressure changes caused by trains running in a tunnel may be measured at full-scale, estimated from approximating equations (see Annex A), predicted using validated numerical methods or measured using moving model tests. The determination of the pressure variations in order to meet the medical safety pressure limits may be undertaken in the same way.

Full-scale test data may be the basis for train and tunnel acceptance and homologation.

Each single train/tunnel combination is described by a train-tunnel-pressure signature.

4.2 Train-tunnel-pressure signature

4.2.1 General

The static pressure in the tunnel as shown in Figure 1 develops as follows when a train enters the tunnel:

- there is a sharp first increase in pressure Δp_N caused by the entry of the nose of the train into the tunnel;
- there is a second increase in pressure $\Delta p_{\rm fr}$ due to friction effects caused by the entry of the main part of the train into the tunnel;
- there is then a drop in pressure Δp_T caused by the entry of the tail of the train in the tunnel;
- there is a sharp drop in pressure Δp_{HP} caused by the passing of the train head at the measurement position in the tunnel.