Characterization of waste - Halogen and sulfur content - Oxygen combustion in closed systems and determination methods

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

E				This Estonian standard EVS-EN 14582:2016 consists of the English text of the European standard EN 14582:2016.
- 1	Standard on jõustur avaldamisega EVS Teata		teate	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
E	Euroopa standardimisoi Euroopa standardi kättesaadavaks 03.08.20	rahvuslikele liikm		Date of Availability of the European standard is 03.08.2016.
- 1 -	Standard on Standardikeskusest.	kättesaadav		The standard is available from the Estonian Centre for Standardisation.

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 13.030.40

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; koduleht <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Aru 10, 10317 Tallinn, Estonia; homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

August 2016

EN 14582

ICS 13.030.40

Supersedes EN 14582:2007

English Version

Characterization of waste - Halogen and sulfur content -Oxygen combustion in closed systems and determination methods

Caractérisation des déchets - Teneur en halogènes et en soufre - Combustion sous oxygène en systèmes fermés et méthodes de dosage

Charakterisierung von Abfällen - Halogen- und Schwefelgehalt - Sauerstoffverbrennung in geschlossenen Systemen und Bestimmungsmethoden

This European Standard was approved by CEN on 17 June 2016.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Cont	ents	Page
Europ	pean foreword	4
-	duction	
1	Scope	6
2	Normative references	6
3	Terms and definitions	6
4	Principle	6
5	Interferences	
6	Hazards	
7	Reagents and control mixtures	
7.1	Reagents	7
7.2	Control mixtures	
8	Sample conservation and pretreatment of test portion	
9	Equipment	
10 10.1	ProcedureGeneral	
10.1	Choice of the absorption solution	
10.3	Preparation of the bomb	11
10.4	Combustion	
10.5 10.6	Collection of the halides and sulphateCleaning procedure	
	Recommended methods of determination	
11	Control measurements	
12		
13	Evaluation	
14	Test report	14
	x A (informative) Performance characteristics	
Annex	x B (informative) Oxygen flask combustion by Schoeniger	
B.1	General	18
B.2	Principle	18
B.3	Interferences and hazards	18
B.4	Reagents and control mixtures	18
B.5	Equipment	18
B.6	Safety precautions	19
B.7	Procedure	19
B.7.1	General	19
B.7.2	Choice of the absorption solution	19

B.7.3	Sample preparation	20					
B.7.4	Combustion	20					
B.8	Determination methods; control measurements; data evaluation and test report	20					
B.9	Performance characteristics	21					
Annex	(C (informative) Recovery yields obtained for control mixtures with different absorption solutions and analytical techniques	2 4					
	nnex D (informative) Examples of possible control substances						
	x E (informative) Additional results of inter-laboratory tests						
	Annex F (informative) Summary of general requirements and recommendations						
Annex	G (informative) Additional validation data						
G.1	General						
G.2	Samples						
G.3	Homogeneity and stability	33					
	Homogeneity and stability						

European foreword

This document (EN 14582:2016) has been prepared by Technical Committee CEN/TC 292 "Characterization of waste", the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2017, and conflicting national standards shall be withdrawn at the latest by February 2017.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 14582:2007.

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, , li mania, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Introduction

Sulfur and halogens (fluorine, chlorine, bromine and iodine) may be found in materials in various forms. During the combustion of these materials, corrosive and harmful compounds may be released. The determination of sulfur and halogens by oxygen combustion may be used to assess the suitability of waste for incineration.

The determination of the resultant halides and sulphate can be achieved by many different techniques, e.g. using atomic emission spectrometry, titrimetry or ion chromatography.

Validation data of these different techniques are given in Annex A (informative).

Another method, oxygen flask combustion by Schoeniger, did not pass the method validation due to lack of participants. This method is described in Annex B (informative).

Anyone dealing with waste and sludge analysis should be aware of the typical risks of that kind of material irrespective of the parameter to be determined. Waste and sludge samples may contain hazardous (e.g. toxic, reactive, flammable, infectious) substances, which can be liable to biological and/or chemical reaction. Consequently these samples should be handled with special care. Gases which may be produced by microbiological or chemical activity are potentially flammable and will oe fo. pressurize sealed containers. Bursting bottles are likely to result in hazardous shrapnel, dust and/or aerosol. National regulations should be followed with respect to all hazards associated with this method.

1 Scope

This standard specifies a combustion method for the determination of halogen and sulfur contents in materials by combustion in a closed system containing oxygen (calorimetric bomb), and the subsequent analysis of the combustion product using different analytical techniques.

This method is applicable to solid, pasty and liquid samples containing more than 0.025 g/kg of halogen and/or 0.025 g/kg of sulfur content. The limit of detection depends on the element, the matrix and the determination technique used.

Insoluble halides and sulphate present in the sample or produced during the combustion step are not completely determined by these methods.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 14346, Characterization of waste - Calculation of dry matter by determination of dry residue or water content

EN 15002, Characterization of waste - Preparation of test portions from the laboratory sample

EN ISO 3696, Water for analytical laboratory use - Specification and test methods (ISO 3696)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

NOTE Be aware that the above definitions are valid for this empirical EN only and do not comply with scientific definitions of sulfur and halogen content.

3.1

sulfur content

sum of sulfur contained as organic and inorganic compounds that can be converted to sulphate by combustion and then absorbed or dissolved in an aqueous solution

3.2

halogen content

sum of halogens contained as organic and inorganic compounds that can be converted to halides (fluoride, chloride, bromide, iodide) by combustion and then absorbed or dissolved in an aqueous solution

4 Principle

The sample is oxidized by combustion in a closed system (a bomb containing oxygen under pressure). Halogenated and sulfur containing compounds are converted to fluoride, chloride, bromide, iodide and sulphate, which are absorbed and/or dissolved in an absorption solution.

Several methods may be used for the determination of halides and sulphate concentrations in the absorption solution.

The method may be used for samples that burn with difficulty, which involves the use of a combustion enhancer.