

IEC 62153-4-4

Edition 2.0 2015-04

INTERNATIONAL

Metallic communication cable test methods – Part 4-4: Electromagnetic compatibility (EMC) – Test method for measuring of the screening attenuation a_s up to and above 3 GHz, triaxial method

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11	
3, rue de Varembé	Fax: +41 22 919 03 00	
CH-1211 Geneva 20	info@iec.ch	
Switzerland	www.iec.ch	

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

More than 60 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

Edition 2.0 2015-04

INTERNATIONAL STANDARD

in non is

Metallic communication cable test methods – Part 4-4: Electromagnetic compatibility (EMC) – Test method for measuring of the screening attenuation a_s up to and above 3 GHz, triaxial method

Ch (

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.100; 33.120.10

ISBN 978-2-8322-2653-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWO	RD	3
	e	
	ative references	
	ols and theoretical background	
3.1	Electrical symbols	
3.2	Theoretical background	
3.3	Screening attenuation	
3.4	Impact of coupling length and relationship between the screening attenuation and the surface transfer impedance Z_{T}	
4 Princ	iples of the measuring method	. 10
5 Meas	surement	.11
5.1	Equipment	.11
5.2	Cable under test	. 11
5.2.1	Coaxial cables	. 11
5.2.2		
5.2.3	F	
5.3	Procedure	
5.4	Expression of results	
6 Requ	irement	. 13
Annex A (normative) Determination of the impedance of the inner circuit	. 14
Annex B (informative) Example of a self-made impedance matching adapter	. 15
Annex C (informative) Reflection loss of a junction	. 17
Bibliograp	hy	. 19
Figure 1 -	- Relationship of U_2/U_1 on a log (<i>f</i>) scale for a single braided cable	8
Figure 2 – a linear (f	- Relationship of U_2/U_1 on a linear (<i>f</i>) scale and screening attenuation a_s on) scale for a single braided cable	9
Figure 3 - curve to the	- Measured screening attenuation a_s formed by the maximum envelope neasured coupling voltage ratio U_2/U_1 of a single braided cable	9
Figure 4 -	- Triaxial measuring set-up	. 10
Figure 5 -	- Triaxial measuring set-up connected to the network analyser	. 10
Figure 6 -	- Preparation of test sample (symmetrical and multi-conductor cables)	. 12
	1 – Attenuation and return loss of an 50 Ω to 5 Ω impedance matching ogarithmic frequency scale	. 15
Figure B.2 adapter; li	2 – Attenuation and return loss of an 50 Ω to 5 Ω impedance matching finear frequency scale	. 16
Figure C.1 – Equivalent circuit of generator with load		
		Ŝ

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-4: Electromagnetic compatibility (EMC) – Test method for measuring of the screening attenuation a_s up to and above 3 GHz, triaxial method

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62153-4-4 has been prepared by technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and microwave passive components and accessories.

This second edition cancels and replaces the first edition, published in 2006 and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition. Impedance matching adapters are no longer required when measuring devices have a characteristic impedance different from the characteristic impedance of the test equipment. The reflection loss due to a mismatch is taken into account by a (calculated) correction factor.

The text of this standard is based on the following documents:

FDIS	Report on voting
46/545/FDIS	46/554/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62153 series, published under the general title, *Metallic communication cable test methods*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

- 4 -

METALLIC COMMUNICATION CABLE TEST METHODS –

Part 4-4: Electromagnetic compatibility (EMC) – Test method for measuring of the screening attenuation a_s up to and above 3 GHz, triaxial method

1 Scope

This part of IEC 62153 describes a test method to determine the screening attenuation a_s of metallic communication cable screens. Due to the concentric outer tube, measurements are independent of irregularities on the circumference and outer electromagnetic field.

A wide dynamic frequency range can be applied to test even super-screened cables with normal instrumentation from low frequencies up to the limit of defined transversal waves in the outer circuit at approximately 4 GHz.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62153-4-1, Metallic communication cable test methods – Part 4-1: Electromagnetic Compatibility (EMC) – Introduction to electromagnetic screening measurements

3 Symbols and theoretical background

3.1 Electrical symbols

<i>Z</i> ₁	characteristic impedance of the primary circuit (cable under test)	
Z2	characteristic impedance of the secondary circuit	
ZS	normalized value of the characteristic impedance of the environment of a typical cable installation (150 Ω). It is in no relation to the impedance of the outer circuit of the test set-up Z_2	
	$Z_{\rm S}$ is always 150 Ω (arbitrary determined) whereas $Z_{\rm 2}$ is varying with the dimensions of the CUT and inner diameter of the tube	
R	input impedance of the receiver	
ZT	transfer impedance of the cable under test in Ω/m	
$Z_{F} = Z_1 \times Z_2 \times j\omega \times C_{T}$	capacitive coupling impedance of the cable under test in Ω/m	
f	frequency in Hz	
CT	through capacitance of the outer conductor per unit length in F/m	
[€] r1	relative dielectric permittivity of the cable under test	
[€] r2	relative dielectric permittivity of the secondary circuit	
[€] r2,n	normalized value of the relative dielectric permittivity of the environment of the cable	
l	effective coupling length	
λ ₀	vacuum wavelength	