TECHNICAL REPORT

CEN/TR 15745

RAPPORT TECHNIQUE

TECHNISCHER BERICHT

April 2015

ICS 75.160.20

Supersedes CEN/TR 15745:2008

English Version

Liquid petroleum products - Determination of hydrocarbon types and oxygenates via multidimensional gas chromatography method - Round Robin research report

Produits pétroliers liquides - Détermination des groupes d'hydrocarbures et de la teneur en composés oxygénés par méthode par chromatrographie multidimensionnelle en phase gazeuse - Rapport de recherches interlaboratoires Flüssige Mineralölerzeugnisse - Bestimmung der Kohlenwasserstoffgruppen und sauerstoffhaltigen Verbindungen mit multidimensionalen gaschromatographischen Verfahren - Round Robin Forschungsbericht

This Technical Report was approved by CEN on 24 February 2015. It has been drawn up by the Technical Committee CEN/TC 19.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

CEN/TR 15745:2015 (E)

Cont	tents	Page
Forew	vord	4
	uction	
1	Scope	
2	Normative references	
- 3	Participating laboratories	
4	Sample set	
· 5 5.1	Results from the round robin test	8
5.1 5.2	Results sample 2	
5.3	Results sample 3	11
5.4	Results sample 4 Review of the data	
6 6.1	Review of the data	
6.2	Methanol	16
6.3 6.4	t-Butanoli-Propanol	
6.5	i-Butanol	
7	Results and conclusions	20
Annex	κ Α (normative) Round Robin Report 2010 - 688	22
A.1	General	
A.2	Motivation	22
A.2.1	General	22
A.2.2	Remarks	22
A.3	Test Procedure and Protocol	23
A.3.1	General	
A.3.2	Participating Laboratories Method A	23
A.3.3	Samples	
A.3.4	Results and Precision Evaluation	24
A.4	Essential RRT Details Methods B, C, D	38
A.4.1	Test Procedure and Protocol	
A.4.2	Participating Laboratories Method B, C and D	38
A.4.3	Samples	38
Annex	k B (normative) Round Robin Report 2010 - 689	43
B.1	Methods and laboratories used	43
B.2	Samples	44
В.3	Results received	44
B.3.1	General	44

CEN/TR 15745:2015 (E)

.3.2	Conclusions				
3.3	Overview results receiv	/ed			
4	Graphs				
	graphy				
	0,				
	04				
	.0				
	9				
	2				
		X			
		/			
		<i>,</i> 0,			
		0)			
			O.		
			4		
				Q _x	
				0	
					6
					Q_{j}

Foreword

This document (CEN/TR 15475:2015) has been prepared by Technical Committee CEN/TC 19 "Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin", the secretariat of which is held by NEN.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes CEN/TR 15745:2008.

R 1574.

Jiment include. The second edition of this document includes Round Robin data generated in 2012 that led to revision of EN ISO 22854.

Introduction

In 2004, the company AC Analytical Controls¹) conducted a Performance Monitoring Program on the AC Reformulyzer™. This is a kind of crosscheck program where customers analyse samples distributed by the company and then report the analysis results. The company checks the analytical performance of the instruments, keeping in mind the possible analytical errors that can occur. Because raw data are reported (chromatogram and data for each carbon number/group), a detailed review can be made. The company informs a customer when the instrument performance is inadequate and where possible provides information and instructions to improve the performance.

The intention was to get a precision statement for oxygenates that were not included in EN 14517 [2], but that are listed in EN 228. Besides this, the performance for other properties (aromatics, olefins, benzene) has been determined.

More information on the review of the data is available from the monitoring, but this technical report focuses on oxygenates. Results for other properties (aromatics, olefins, benzene) are listed in the tables but are not discussed in detail here. Also the evaluation for outliers is done on oxygenates only, not on the other properties.

The precision data obtained from this program were used to develop the EN ISO 22854 method which was published in 2008 [3].

In 2010 another Round Robin was organized to establish a test method to determine the oxygenated components in ethanol automotive fuel (E85). Components such as ethers, C3-C5 alcohols and ethanol could be made part of an E85 specification.

Four methods were tested:

- A. EN ISO 22854 modified (with sample dilution)
- B. EN 1601 modified (with sample dilution)
- C. Capillary column method (2 columns in series, UNGDA method)
- D. Capillary column method (2 separate columns, Suedzucker method)

Only method A with sample dilution had enough participants to derive a precision statement. The dilution step was needed to lower the ethanol content in the sample to values below 20 % (V/V).

The Round Robin was carried out by TC 19/WG 9 and the results were evaluated conform EN ISO 4259. As methods B, C and D did not get enough participants a 2nd ILS was carried out to see if more data could be obtained for these methods. The details of these Round Robin Tests are added as Appendix A and B to this Research Report.

¹⁾ Postal address: AC Analytical Controls, Innsbruckweg 35 3047 AG Rotterdam, The Netherlands, E-mail:sales.netherlands@paclp.com, Web: www.paclp.com.

1 Scope

This Technical Report presents the study on the application of EN 14517 [2] to other oxygenates. This report supports an extension of the scope of the method, which has been explicitly requested by ISO/TC 28 at the time of revision of EN 14517 and was agreed to result in the parallel Standard EN ISO 22854 [3].

This Technical Report is published as background information to judge the approval of the use of the method for the determination of all oxygenates as mentioned in the European Fuels Directive. This Technical Report should also support the use of multidimensional chromatography as the method for disputes on oxygenates in EN 228 [1].

NOTE For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN ISO 4259, Petroleum products — Determination and application of precision data in relation to methods of test (ISO 4259)

3 Participating laboratories

Laboratories that have participated in the 2005 to 2006 Round Robin work are mentioned in Table 1.

Company / lab Company / lab Country Country Umweltbundesamt Austria MOL Hungary Total Raffinaderij Belgium ENI Gela Italy **BRC** Belgium ENI, Euron Italy Statoil Kalundborg Denmark **ENI Agip Roma** Italy Finland Fortum **ENI Agip** Italy ExxonMobil France **ENI Agip Sanazzaro** Italy Total CReG France **ENI R&M Livorno** Italy Shell Petit-Couronne SGS Spijkenisse Netherlands France **PCK** Nerefco Netherlands Germany Netherlands BP Gelsenkirchen Germany Total Total Leuna Germany Shell Pernis Netherlands SGS Speyer Germany Slovnaft Slovak Republic Bayernoil Repsol Spain Germany BP **BP Castellon** Spain Germany ConocoPhilips UK Opel Germany Shell Heide Germany Intertek Sunbury UK Hellenic Petroleum UK Greece Total MOL RT Shell Global Solutions UK Hungary

Table 1 — Participating laboratories

Laboratories that have participated in the second RR work are presented in Annex B.