EESTI STANDARD

EVS-EN 16603-10-04:2015

Space engineering - Space environment

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

3			
See Eesti standard EVS-EN 16603-10-04:2015 sisaldab Euroopa standardi EN 16603-10-04:2015 ingliskeelset teksti.	This Estonian standard EVS-EN 16603-10-04:2015 consists of the English text of the European standard EN 16603-10-04:2015.		
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.		
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 28.01.2015.	Date of Availability of the European standard is 28.01.2015.		
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.		

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 49.140

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; koduleht <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Aru 10, 10317 Tallinn, Estonia; homepage <u>www.evs.ee</u>; phone +372 605 5050; e-mail <u>info@evs.ee</u>

EUROPEAN STANDARD

EN 16603-10-04

NORME EUROPÉENNE

EUROPÄISCHE NORM

January 2015

ICS 49.140

Supersedes EN 14092:2002

English version

Space engineering - Space environment

Ing?ierie spatiale - Environnement spatial

Raumfahrttechnik - Raumfahrtumweltbedingungen

This European Standard was approved by CEN on 28 December 2013.

CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Table of contents

>	\$ 1	Table of co	ontents
	Ś		
Forew	ord		12
Introd	uction		13
1 Scor	oe	<u> </u>	14
2 Norr	nativo r	eferences	15
2 11011	native i		
3 Tern	ns, defiı	nitions and abbreviated terms	17
3.1	Terms	defined in other standards	17
3.2	Terms	specific to the present standard	17
3.3	Abbrev	viated terms	26
4 Grav	/ity		29
4.1	Introdu	ction and description	29
	4.1.1	Introduction	29
	4.1.2	Gravity model formulation	29
	4.1.3	Third body gravitation	31
	4.1.4	Tidal effects	31
4.2	Require	ements for model selection and application	31
	4.2.1	General requirements for gravity models	31
	4.2.2	Selection and application of gravity models	32
5 Geo	magnet	ic fields	33
5.1	Introdu	ction and description	33
	5.1.1	The geomagnetic field and its sources	
	5.1.2	The internal field	33
	5.1.3	External field: ionospheric components	34
	5.1.4	External magnetic field: magnetospheric components	
	5.1.5	Models of the internal and external geomagnetic fields	
5.2	Require	ements for model selection and application	
	5.2.1	The internal field	
	5.2.2	The external field	
5.3	Tailorin	ng guidelines	37

6 Natu	ral elect	tromagnetic radiation and indices	38
6.1	Introduc	ction and description	38
	6.1.1	Introduction	38
	6.1.2	Electromagnetic radiation and indices	38
6.2	Require	ments	41
(6.2.1	Electromagnetic radiation	41
	6.2.2	Reference index values	42
	6.2.3	Tailoring guidelines	42
6.3	Tables.	<u>, </u>	43
7 Neut	ral atmo	ospheres	45
7.1	Introduc	ction and description	45
	7.1.1	Introduction	45
	7.1.2	Structure of the Earth's atmosphere	45
	7.1.3	Models of the Earth's atmosphere	45
	7.1.4	Wind model of the Earth's homosphere and heterosphere	46
7.2	Require	ments for atmosphere and wind model selection	47
	7.2.1	Earth atmosphere	47
	7.2.2	Earth wind model	48
	7.2.3	Models of the atmospheres of the planets and their satellites	48
8 Plas	mas		49
8 1	Introduc	tion and description	49
0.1	8 1 1		49
	812	lonosphere	49
	8.1.3	Plasmasphere	
	8.1.4	Outer magnetosphere	50
	8.1.5	Solar wind	51
	8.1.6	Magnetosheath	51
	8.1.7	Magnetotail	51
	8.1.8	Planetary environments	52
	8.1.9	Induced environments	52
8.2	Require	ments for model selection and application	52
	8.2.1	General	52
	8.2.2	lonosphere	53
	8.2.3	Auroral charging environment	53
	8.2.4	Plasmasphere	54
	825		54
	0.2.0	Outer magnetosphere	
	8.2.6	Outer magnetosphere The solar wind (interplanetary environment)	55

	8.2.7	Other plasma environments	55
	8.2.8	Tables	56
9 Ene	ergetic pa	article radiation	57
9.1	Introdu	ction and description	57
	9.1.1	Introduction	57
, v	9.1.2	Overview of energetic particle radiation environment and effects	57
9.2	Require	ements for energetic particle radiation environments	60
	9.2.1	Trapped radiation belt fluxes	60
	9.2.2	Solar particle event models	62
	9.2.3	Cosmic ray models	63
	9.2.4	Geomagnetic shielding	63
	9.2.5	Neutrons	63
	9.2.6	Planetary radiation environments	64
9.3	Prepara	ation of a radiation environment specification	64
9.4	Tables.		65
10 Sp	bace deb	ris and meteoroids	66
10.	1 Introdu	ction and description	66
	10.1.1	The particulate environment in near Earth space	66
	10.1.2	Space debris	66
	10.1.3	Meteoroids	67
10.	2 Require	ements for impact risk assessment and model selection	67
	10.2.1	General requirements for meteoroids and space debris	67
	10.2.2	Model selection and application	68
	10.2.3	The MASTER space debris and meteoroid model	69
	10.2.4	The meteoroid model	69
	10.2.5	Impact risk assessment	70
	10.2.6	Margins and worst case fluxes	71
11 Co	ontamina	tion	72
11.	1 Introdu	ction and description	72
	11.1.1	Introduction	72
	11.1.2	Description of molecular contamination	72
	11.1.3	Transport mechanisms	73
	11.1.4	Description of particulate contamination	73
	11.1.5	Transport mechanisms	74
11.	2 Require	ements for contamination assessment	74
Anne	x A (norr	mative) Natural electromagnetic radiation and indices	75

A.1	Solar activity values for complete solar cycle	75
A.2	Tables	76
Annex	B (normative) Energetic particle radiation	80
B.1	Historical dates of solar maximum and minimum	80
B.2	GEO model (IGE-2006)	80
B.3	ONERA MEOv2 model	80
B.4	FLUMIC model	81
	B.4.1 Overview	81
	B.4.2 Outer belt (L>2,5 Re)	81
	B.4.3 Inner belt (L<2,5 Re)	82
B.5	NASA worst case GEO spectrum	83
B.6	ESP solar proton model specification	83
B.7	Solar ions model	84
B.8	Geomagnetic shielding (Størmer theory)	84
B.9	Tables	85
Annex	C (normative) Space debris and meteoroids	
C.1	Flux models	97
	C.1.1 Meteoroid velocity distribution	97
	C.1.2 Flux enhancement and altitude dependent velocity distribution	97
	C.1.3 Earth shielding and flux enhancement from spacecraft motion	
	C.1.4 Meteoroid streams	
C.2	Tables	102
٨٥٥٥٧	D (informative) Gravitation	105
	Cravity models: background	105
ו.ע ר ח	Guidelines for use	105
D.2	Availability of models	100
D.3	Tables	108
D. 4	Figures	100
D.5	r igures	
Annex	E (informative) Geomagnetic fields	110
E.1	Overview of the effects of the geomagnetic field	110
E.2	Models of the internal geomagnetic field	110
E.3	Models of the external geomagnetic field	111
E.4	Magnetopause boundary	
E.5	Geomagnetic coordinate system – <i>B</i> and <i>L</i>	112
E.6	Tables	115
E.7	Figures	117

Annex	F (infor	mative) Natural electromagnetic radiation and indices	119
F.1	Solar sp	pectrum	119
F.2	Solar ar	nd geomagnetic indices – additional information	119
	F.2.1	E10.7	119
2	F.2.2	F10.7	119
(F.2.3	S10.7	120
	F.2.4	M10.7	120
F.3	Addition	nal information on short-term variation	120
F.4	Useful i	nternet references for indices	121
F.5	Earth el	ectromagnetic radiation	121
	F.5.1	Earth albedo	121
	F.5.2	Earth infrared	122
F.6	Electror	nagnetic radiation from other planets	123
	F.6.1	Planetary albedo	123
	F.6.2	Planetary infrared	123
F.7	Activity	indices information	123
F.8	Tables.		123
F.9	Figures		124
Annex	G (info	rmative) Neutral atmospheres	127
G.1	Structur	e of the Earth's atmosphere	127
G.2	Develop	oment of models of the Earth's atmosphere	
G.3	NRLMS	ISE-00 and JB-2006 - additional information	
G.4	The GR	AM series of atmosphere models.	129
G.5	Atmosp	here model uncertainties and limitations	129
G.6	HWM93	3 additional information	129
G.7	Planeta	ry atmospheres models	130
	G.7.1	Jupiter	130
	G.7.2	Venus	130
	G.7.3	Mars	131
	G.7.4	Saturn	131
	G.7.5	Titan	131
	G.7.6	Neptune	131
	G.7.7	Mercury	131
G.8	Referer	ice data	132
G.9	Tables.		133
G.10	Figures		138
Annex	H (info	rmative) Plasmas	142

H.1	Identific	cation of plasma regions	142
H.2	Plasma	effects on spacecraft	142
H.3	Referer	nce data	143
	H.3.1	Introduction	143
2	H.3.2	lonosphere	143
	H.3.3	Plasmasphere	143
	H.3.4	Outer magnetosphere	144
	H.3.5	Magnetosheath	144
	H.3.6	Magnetotail and distant magnetosheath	144
	H.3.7	Planetary environments	145
	H.3.8	Induced environments	145
H.4	Tables.	Q	146
H.5	Figures		149
Annex	l (infor	mative) Energetic particle radiation	150
I.1	Trappe	d radiation belts	150
	I.1.1	Basic data	150
	I.1.2	Tailoring guidelines: orbital and mission regimes	150
	I.1.3	Existing trapped radiation models	151
	I.1.4	The South Atlantic Anomaly	153
	l.1.5	Dynamics of the outer radiation belt	154
	I.1.6	Internal charging	154
1.2	Solar pa	article event models	154
	I.2.1	Overview	154
	1.2.2	ESP model	155
	1.2.3	JPL models	155
	1.2.4	Spectrum of individual events	156
	1.2.5	Event probabilities	157
	1.2.6	Other SEP models	157
1.3	Cosmic	ray environment and effects models	158
1.4	Geoma	gnetic shielding	158
1.5	Atmosp	oheric albedo neutron model	158
I.6	Planeta	ary environments	159
	I.6.1	Overview	159
	1.6.2	Existing models	
1.7	Interpla	netary environments	
1.8	Tables.		160
1.9	Figures	·	162

Annex	J (infor	mative) Space debris and meteoroids	168
J.1	Referen	ce data	168
	J.1.1	Trackable space debris	168
	J.1.2	Reference flux data for space debris and meteoroids	168
J.2	Addition	al information on flux models	169
	J.2.1	Meteoroids	169
	J.2.2	Space debris flux models	170
	J.2.3	Model uncertainties	172
J.3	Impact r	isk assessment	172
	J.3.1	Impact risk analysis procedure	172
	J.3.2	Analysis complexity	173
	J.3.3	Damage assessment	173
J.4	Analysis	tools	174
	J.4.1	General	174
	J.4.2	Deterministic analysis	174
	J.4.3	Statistical analysis	174
J.5	Tables	· · ·	175
J.6	Figures		179
A 19 19 9 14	- V (infor	metica) Contamination and deale	400
Annex		mative) Contamination modelling and tools	182
K.1	Models.		182
	K.1.1	Overview	182
	K.1.2	Sources	182
	K.1.3	I ransport of molecular contaminants	184
K.2	Contam	ination tools	186
	K.2.1	Overview	186
	K.2.2	COMOVA: COntamination MOdelling and Vent Analysis	186
	K.2.3	ESABASE: OUTGASSING, PLUME-PLUMFLOW and CONTAMINE modules	186
	K.2.4	TRICONTAM	187
F :	_	6.	
Figures	5	I I	

Figures

Figure D-1	: Graphical representation of the EIGEN-GLO4C geoid (note: geoid heights are exaggerated by a factor 10 000)10)9
Figure E-1	: The IGRF-10 field strength (nT, contour level = 4 000nT, at 2005) and secular variation (nT yr ⁻¹ , contour level = 20 nT yr ⁻¹ , valid for 2005), at geodetic altitude 400 km with respect to the WGS-84 reference ellipsoid)11	7
Figure E-2	: The general morphology of model magnetospheric field lines, according to the Tsyganenko 1989 model, showing the seasonal variation, dependent on rotation axis tilt	8

Figure F-1	: Solar spectral irradiance (in red, AM0 (Air Mass 0) is the radiation level outside of the Earth's atmosphere (extraterrestrial), in blue, AM1,5 is the radiation level after passing through the atmosphere 1,5 times, which is about the level at solar zenith angle 48,19°s, an average level at the Earth's surface (terrestrial)).	.124
Figure F-2	: Daily solar and geomagnetic activity indices over the last two solar cycles	.125
Figure F-3	: Monthly mean solar and geomagnetic activity indices over the last two solar cycles	.126
Figure G-1	: Temperature profile of the Earth's atmosphere	.138
Figure G-2	: Variation of the JB-2006 mean air density with altitude for low, moderate, high long and high short term solar and geomagnetic activities	.139
Figure G-3	: Variation of the NRLMSISE-00 mean atomic oxygen with altitude for low, moderate and high long solar and geomagnetic activities	.140
Figure G-4	: Variation of the NRLMSISE-00 mean concentration profile of the atmosphere constituents N_2 , O , O_2 , He , Ar , H , N and anomalous O with altitude for moderate solar and geomagnetic activities ($F10.7 = F10.7_{avg} = 140$, $A_p = 15$)	.141
Figure H-1	: Profile of electron density for solar magnetic local time = 18hr, solar magnetic latitude=0, Kp =0 and 9 from the GCPM for 1/1/1999	.149
Figure I-1 :	Contour plots of the proton and electron radiation belts	.162
Figure I-2 :	Electron (a) and proton (b) omnidirectional fluxes, integral in energy, on the geomagnetic equator for various energy thresholds	.163
Figure I-3 :	Integral omnidirectional fluxes of protons (>10 MeV) and electrons (>10 MeV) at 400 km altitude showing the inner radiation belt's "South Atlantic anomaly" and, in the case of electrons, the outer radiation belt encountered at high latitudes	.164
Figure I-4 :	Comparison of POLE with AE8 (flux vs. Energy) for 15 year mission (with worst case and best case included)	.165
Figure I-5 :	Comparison of ONERA/GNSS model from 0,28 MeV up to 1,12 MeV (best case, mean case and worst case) with AE8 (flux vs. Energy) for 15 yr mission (with worst case & best case)	.165
Figure I-6 :	Albedo neutron spectra at 100 km altitude at solar maximum	.166
Figure I-7 :	Albedo neutron spectra at 100 km altitude at solar minimum	.166
Figure I-8 :	Jupiter environment model (proton & electron versions)	.167
Figure J-1	: Time evolution of the number of trackable objects in orbit (as of September 2008)	.179
Figure J-2	: Semi-major axis distribution of trackable objects in LEO orbits (as of September 2008)	.180
Figure J-3	: Distribution of trackable objects as function of their inclination (as of September 2008)	.180
Figure J-4	: The HRMP velocity distribution for different altitudes from the Earth surface.	.181

Tables

Table 6-1:	Conversion from K_p to a_p	43
Table 6-2: I	Electromagnetic radiation values	43
Table 6-3: I	Reference fixed index values	43
Table 6-4: I	Reference index values for variations of a_p	43
Table 8-1: V	Worst-case bi-Maxwellian environment	56
Table 8-2:	Solar wind parameters	56
Table 9-1:	Standard field models to be used with AE8 and AP8	65
	C	
Table A-1 :	Solar cycle 23 solar activity indices averaged over 30-day (1 month) intervals	.76
Table B-1 :	Minima and maxima of sunspot number cycles	85
Table B-2 :	IGE 2006 GEO average model – electron flux (kev ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹) according to year in the solar cycle (referred to solar min: 0) and for different energies for a mission duration of 1 year.	.86
Table B-3 I	GE 2006 GEO upper case model - maximum electron flux (kev ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹) according to year in the solar cycle (referred to solar min: 0) and for different energies for a mission duration of 1 year.	.87
Table B-4 :	MEOv2 average case model - average electron flux (Mev ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹) according to year in the solar cycle (referred to solar min: 0) and for different energies for a mission duration of 1 year.	.89
Table B-5 :	MEOv2 upper case model - maximum electron flux (Mev ⁻¹ cm ⁻² s ⁻¹ sr ⁻¹) according to year in the solar cycle (referred to solar min: 0) and for different energies for a mission duration of 1 year.	.89
Table B-6 :	Worst case spectrum for geostationary orbits	90
Table B-7 :	Values of the parameters for the ESP model	90
Table B-8 :	Values to scale fluence from >100 MeV to >300 MeV	91
Table B-9 :	CREME-96 solar ion worst 5-minute fluxes in an interplanetary environment	91
Table B-10	: CREME-96 solar ion worst day fluxes in an interplanetary environment	93
Table B-11	: CREME-96 solar ion worst week fluxes in an interplanetary environment	95
Table C-1 :	Normalized meteoroid velocity distribution1	02
Table C-2 :	The annual meteor streams1	03
Table D-1 :	Degree power attenuation for an orbit at 25 000 km altitude1	80
Table D-2 :	Coefficients of the EIGEN-GL04C model up to degree and order 8 × 81	09
Table E-1 :	IGRF-10 data for epoch 1960-20101	15
Table E-2 :	Sibeck et al. Magnetopause model1	16
Table F-1 :	Reference values for average planetary albedo and infra-red radiation1	23
Table G-1 :	Altitude profiles of the atmosphere constituents N ₂ , O, O ₂ , He, Ar, H, N and anomalous O for low solar and geomagnetic activities (NRLMSISE-00 model - $F10.7 = F10.7_{avg} = 65$, $A_p = 0$)	33

Table G-2	: Altitude profiles of the atmosphere constituents N ₂ , O, O ₂ , He, Ar, H, N and anomalous O for mean solar and geomagnetic activities (NRLMSISE-00 model - $F10.7 = F10.7_{avg} = 140$, $A_p = 15$)	.134
Table G-3 :	: Altitude profiles of the atmosphere constituents N ₂ , O, O ₂ , He, Ar, H, N and anomalous O for high long term solar and geomagnetic activities (NRLMSISE-00 model - $F10.7 = F10.7_{avg} = 250$, $A_p = 45$)	.135
Table G-4	: Altitude profiles of total density ρ [kg m ⁻³] for low, moderate, high long and high short term solar and geomagnetic activities (JB-2006 model)	.136
Table H-1 :	Regions encountered by different mission types	.146
Table H-2 :	Main engineering concerns due to space plasmas	.147
Table H-3 :	Ionospheric electron density profiles derived from IRI-2007 for date 01/01/2000, lat=0, long=0	.147
Table H-4 :	Profile of densities for solar magnetic local time = 18hr, solar magnetic latitude=0, Kp = 5,0 from the GCPM for 1/1/1999	.148
Table H-5 :	: Typical plasma parameters at geostationary orbit	.148
Table H-6 :	: Typical magnetosheath plasma parameters	.148
Table H-7 :	Typical plasma parameters around L2	.148
Table H-8 :	Worst-case environments for eclipse charging near Jupiter and Saturn	.149
Table H-9 :	Photoelectron sheath parameters	.149
Table H-10	: Some solar UV photoionization rates at 1 AU	.149
Table I-1 :	Characteristics of typical radiation belt particles	.160
Table I-2 :	Recommended updated values of the parameters of the JPL model	.160
Table I-3 :	Proton fluence levels for energy, mission duration and confidence levels from the ESP model with the NASA parameters from Table B-7.	.161
Table I-4 :	Parameters for the fit to the peak fluxes from the October 1989 events	.161
Table J-1 :	Approximate flux ratios for meteoroids for 400 km and 800 km altitudes	.175
Table J-2 :	Cumulative number of impacts, <i>N</i> , to a randomly oriented plate for a range of minimum particle sizes using the MASTER-2005 model	.175
Table J-3 :	Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle sizes using the MASTER-2005 model	.176
Table J-4 :	Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle sizes using the MASTER-2005 model	.177
Table J-5 :	Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle masses	.178
Table J-6 :	Parameters (appearing in Eq. (C-15) to account for modified meteoroid fluxes encountered by spacecraft in circular Earth orbits at various altitudes	.179

Foreword

This document (EN 16603-10-04:2015) has been prepared by Technical Committee CEN/CLC/TC 5 "Space", the secretariat of which is held by DIN.

This standard (EN 16603-10-04:2015) originates from ECSS-E-ST-10-04C.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2015, and conflicting national standards shall be withdrawn at the latest by July 2015.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document supersedes EN 14092:2002.

This document has been developed to cover specifically space systems and has therefore precedence over any EN covering the same scope but with a wider domain of applicability (e.g. : aerospace).

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

12

Introduction

This standard forms part of the System Engineering branch (ECSS-E-10) of the Engineering area of the ECSS system. As such it is intended to assist in the consistent application of space environment engineering to space products through specification of required or recommended methods, data and models to the problem of ensuring best performance, problem avoidance or survivability of a product in the space environment.

The space environment can cause severe problems for space systems. Proper assessment of the potential effects is part of the system engineering process as defined in ECSS-E-ST-10. This is performed in the early phases of a mission when consideration is given to e.g. orbit selection, mass budget, thermal protection, and component selection policy. As the design of a space system is developed, further engineering iteration is normally necessary with more detailed analysis.

In this Standard, each component of the space environment is treated separately, although synergies and cross-linking of models are specified. Informative annexes are provided as explanatory background information associated with each clause.

ied as expr.

1 Scope

This standard applies to all product types which exist or operate in space and defines the natural environment for all space regimes. It also defines general models and rules for determining the local induced environment.

Project-specific or project-class-specific acceptance criteria, analysis methods or procedures are not defined.

The natural space environment of a given item is that set of environmental conditions defined by the external physical world for the given mission (e.g. atmosphere, meteoroids and energetic particle radiation). The induced space environment is that set of environmental conditions created or modified by the presence or operation of the item and its mission (e.g. contamination, secondary radiations and spacecraft charging). The space environment also contains elements which are induced by the execution of other space activities (e.g. debris and contamination).

This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to, or revision of any of these publications do not apply, However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the more recent editions of the normative documents indicated below. For undated references, the latest edition of the publication referred to applies.

EN reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS system – Glossary of terms

N.S.

[RN.1]	C. Förste, F. Flechtner, R. Schmidt, R. König, U. Meyer, R. Stubenvoll, M. Rothacher, F.
	Bartneimes, H. Neumayer, K. Biancale, S. Bruinsma, JM. Lemoine, and S. Loyer, A Mean Global Gravity Field Model from the Combination of Satellite Mission and Altimetry/Gravimetry
	Surface Data – FIGEN-GL04C Geophysical Research Abstracts Vol 8 03462 2006
[RN 2]	D D McCarthy and Gerard Petit (editors) JERS Conventions (2003) JERS Technical Note 32
[10.0-]	Verlag des Bundesamtes für Kartographie und Geodäsie. Frankfurt am Main. 2004
[RN.3]	E.M. Standish, JPL Planetary and Lunar Ephemerides DE405/LE405, JPL Inter-Office
[]	Memorandum IOM 312F-98-048, Aug.25, 1998
[RN.4]	Picone, J. M., A. E. Hedin, D. P. Drob and Aikin, A. C., "NRLMSISE-00 Empirical Model of the
	Atmosphere: Statistical Comparisons and Scientific Issues", J. Geophys. Res., 107(A12), doi
	10.1029/2002JA009430. 2002, p. 1468.
[RN.5]	Bowman, B. R., Tobiska, W. K., Marcos, F. A., Valladares, "The JB2006 Empirical
	Thermospheric Density Model", Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 70,
	Issue 5, pp. 774-793, 2008, doi:10.1016/j.jastp.2007.10.002.
[RN.6]	Hedin, A.E., E.L. Fleming, A.H. Manson, F.J. Scmidlin, S.K. Avery, R.R. Clark, S.J. Franke, G.J.
	Fraser, T. Tsunda, F. Vial and R.A. Vincent, Empirical Wind Model for the Upper, Middle, and
	Lower Atmosphere, J. Atmos. Terr. Phys., 58, 1421-1447, 1996.
[RN.7]	Lewis S. R., Collins M., Read P.L., Forget F., Hourdin F., Fournier R., Hourdin C., Talagrand O.,
	Huot, JP.,, "A Climate Database for Mars", J. Geophys. Res. Vol. 104, No. E10, p. 24,177-
	24,194, 1999.
[RN.8]	Gallagher D.L., P.D. Craven, and R.H. Comfort. Global Core Plasma model. J. Geophys. Res.,
500 L 01	105, A8, 18819-18833, 2000.
[RN.9]	Bilitza, D. and B. Reinisch, International Reference Ionosphere 2007: Improvements and New
FD31403	Parameters, Advances in Space Research, 42, Issue 4, pp. 599-609, 2008.
[RN.10]	Vette J.I., "The AE-8 Trapped Electron Model Environment", NSSDC/WDC-A-R&S Report 91-
[D]] 111	24, NASA-GSFC, 1991.
[RN.11]	Sawyer D.M. and J.I. Vette, "AP8 Trapped Proton Environment For Solar Maximum and Solar
[D]] 10]	Minimum", NSSDC WDC-A-R&S 76-06, NASA-GSFC, 1976.
[RN.12]	A Sicard-Piet, S. A.Bourdarie, D. M. Boscher, R. H. W. Friedel, M. Thomsen, I. Goka,
	H.Matsumoto, H. Kosniishi, "A new international geostationary electron model: IGE-2006, from 1
	kev to 5.2 MeV , space weather, 6, S0/003, doi:10.1029/200/SW000368, 2008.

- [RN.13] Sicard-Piet A., S. Bourdarie, D. Boscher, R. Friedel, T. Cayton, Solar Cycle Electron Radiation Environement at GNSS Like Altitude, session D5.5-04, Proceedings 57th International Astronautical Congress, Valencia, Sept 2006
- [RN.14] Rodgers D.J, Hunter K.A and Wrenn G.L, The Flumic Electron Environment Model, Proceedings 8th Spacecraft Charging Technology Conference, Huntsville Alabama, 2003
- [RN.15] Xapsos, M. A., G.P. Summers, J.L. Barth, E. G. Stassinopoulos and E.A. Burke, "Probability Model for Cumulative Solar Proton Event Fluences", IEEE Trans. Nucl. Sci., vol. 47, no. 3, June 2000, pp 486-490
- [RN.16] Lario et al., Radial and Longitudinal Dependence of solar 4-13 MeV and 27-37 MeV Proton Peak Intensities and Fluences: HELIOS and IMP8 Observations, Astrophys Journal, 653:1531-1544, Dec 20, 2006.
- [RN.17] Bourdarie, S., A. Sicard-Piet, "Jupiter environment modelling", ONERA Technical note 120 Issue 1.2, ESA contract 19735/NL/HB, FR 1/11189 DESP, October 2006
- [RN.18] CREME96: https://creme96.nrl.navy.mil/
- [RN.19] ISO Model 15390
- [RN.20] Adams J.H., R. Silberberg and C.H. Tsao, "Cosmic Ray Effects on Microelectronics, Part I: The Near-Earth Particle Environment", NRL Memorandum Report 4506, Naval Research Laboratory, Washington DC 20375-5000, USA, 1981.
- [RN.21] Desorgher, L., MAGNETOCOSMICS User Manual 2003, http://reat.space.qinetiq.com/septimess/magcos/
- [RN.22] Smart, D. F., Shea, M.A., Calculated cosmic ray cut-off rigidities at 450 km for epoch 1990, Proc. 25th ICRC, 2, 397-400, 1997.
- [RN.23] Stassinopoulos E.G. and J.H. King, "Empirical Solar Proton Model For Orbiting Spacecraft Applications", IEEE Trans. on Aerosp. and Elect. Systems AES-10, 442, 1973
- [RN.24] D. C. Jensen and J. C. Cain, An Interim Geomagnetic Field, J. Geophys. Res. 67, 3568, 1962.
- [RN.25] J. C. Cain, S. J. Hendricks, R. A. Langel, and W. V. Hudson, A Proposed Model for the International Geomagnetic Reference Field, 1965, J. Geomag. Geoelectr. 19, 335, 1967.
- [RN.26] MASTER-2005 CD, Release 1.0, April 2006
- [RN.27] NOAA/SEC source of dates for solar maxima and minima: ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/maxmin.new
- [RN.28] Roberts C.S., "Co-ordinates for the Study of Particles Trapped in the Earth's Magnetic Field: A Method of Converting from B,L to R,λ Co-ordinates", J. Geophys. Res. 69, 5 089, 1964.
- [RN.29] IGRF-10, the list of coefficients is given at the IGRF web page on the IAGA web site: http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
- [RN.30] Alexeev I.I., Kalegaev V.V., Belenkaya E.S., Bobrovnikov S.Yu., Feldstein Ya.I., Gromova L.I. (2001), J. Geophys. Res., V.106, No A11, P. 25,683-25,694
- [RN.31] Tsyganenko, N.A., and D.P. Stern, Modeling the global magnetic field of the large-scale Birkeland current sustems, J. Geophys. Res., V. 101, 27187-27198, 1996.

16