INTERNATIONAL STANDARD

Fourth edition 2015-06-01

R' t' Rubber, vulcanized or thermoplastic — Determination of tear strength —

Part 1:

Trouser, angle and crescent test pieces

Caoutchouc vulcanisé ou thermoplastique — Détermination de la is airen. avettes pa. résistance au déchirement —

Partie 1: Éprouvettes pantalon, angulaire et croissant

Reference number ISO 34-1:2015(E)

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Foreword		iv
1	Scope	1
2	Normative references	2
3	Terms and definitions	2
4	Principle	2
5	Apparatus	
6	Calibration	5
7	Test piece	6
8	Number of test pieces	6
9	Temperature of test	6
10	Procedure	7
11	Expression of results	7
12	Test report	7
Annex A (informative) Precision results from an interlaboratory test programme		9
Annex B (normative) Calibration schedule		
Bibliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <u>www.iso.org/directives</u>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <u>www.iso.org/patents</u>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC45, *Rubber and rubber products*, Subcommittee SC 2, Testing and analysis.

This fourth edition cancels and replaces the third edition (ISO 34-1:2010), which has been technically revised. Precision results from an interlaboratory have been updated as Annex A.

ISO 34 consists of the following parts, under the general title Rubber, vulcanized or thermoplastic — *Determination of tear strength:*

— Part 1: Trouser, angle and crescent test pieces

Part 2: Small (Delft) test pieces

Rubber, vulcanized or thermoplastic — Determination of tear strength —

Part 1: Trouser, angle and crescent test pieces

WARNING 1 — Persons using this part of ISO 34 should be familiar with normal laboratory practice. This part of ISO 34 does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

WARNING 2 — Certain procedures specified in this part of ISO 34 might involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use.

1 Scope

This part of ISO 34 specifies three test methods for the determination of the tear strength of vulcanized or thermoplastic rubber, namely the following:

- method A, using a trouser test piece;
- method B, using an angle test piece, with or without a nick of specified depth;
- method C, using a crescent test piece with a nick.

The value of tear strength obtained depends on the shape of the test piece, speed of stretching, and temperature of test. It can also be susceptible to grain effects in rubber.

Method A: Using a trouser test piece

Method A, using the trouser test piece, is preferred because it is not sensitive to the length of the cut, unlike the other two test pieces in which the nick has to be very closely controlled. In addition, the results obtained are more easily related to the fundamental tear properties of the material and are less sensitive to modulus effects (provided that the leg extension is negligible) and the rate of propagation of the tear is directly related to the rate of grip separation. With some rubbers, the propagation of tear is not smooth (knotty tear), and analysis of results can be difficult.^[3]

Method B, procedure (a): Using an angle test piece without nick

This test is a combination of tear initiation and propagation. Stress is built up at the point of the angle until it is sufficient to initiate a tear and then further stresses propagate this tear. However, it is only possible to measure the overall force required to rupture the test piece, and, therefore, the force cannot be resolved in two components producing initiation and propagation.^[4]

Method B, procedure (b): Using an angle test piece with nick

This test measures the force required to propagate a nick already produced in the test piece. The rate of propagation is not directly related to the jaw speed.^[5]

Method C: Using a crescent test piece

This test also measures the force required to propagate a nick already produced in the test piece, and the rate of propagation is not related to the jaw speed.

NOTE A separate method for the determination of the tear strength of small test pieces of rubber (Delft test pieces) is specified in ISO 34-2.^[1]

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5893, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Specification

ISO 6133, Rubber and plastics — Analysis of multi-peak traces obtained in determinations of tear strength and adhesion strength

ISO 18899:2013, Rubber — Guide to the calibration of test equipment

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

trouser tear strength

median force required to propagate a cut in a specified trouser-shaped test piece by tearing, divided by the thickness of the test piece, the force acting in a direction substantially in the plane of the cut

Note 1 to entry: The median force is calculated in accordance with ISO 6133.

3.2

unnicked angle tear strength

maximum force required to rupture a specified angle-shaped test piece, divided by the thickness of the test piece, the force acting in a direction substantially along the length of the test piece

3.3

nicked angle tear strength

crescent tear strength

maximum force required to cause a nick cut in a specified angle- or crescent-shaped test piece to extend by tearing of the rubber, divided by the thickness of the test piece, the force acting in a direction substantially normal to the plane of the nick

4 Principle

The test consists in measuring the force required to tear a specified test piece, in continuation of the cut or nick already produced in the test piece or, in the case of method B, procedure (a), completely across the width of the test piece.

The tearing force is applied by means of a tensile testing machine, operated without interruption at a constant rate of traverse until the test piece breaks. Dependent upon the method employed, the maximum or median force achieved is used to calculate the tear strength.

No correlation between data obtained by the alternative test pieces is implied.