EESTI STANDARD

Anis oocun

Measuring relays and protection equipment - Part 121: **Functional requirements for distance protection**

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

See Eesti standard EVS-EN 60255-121:2014 sisaldab Euroopa standardi EN 60255-121:2014 ingliskeelset teksti.	This Estonian standard EVS-EN 60255-121:2014 consists of the English text of the European standard EN 60255-121:2014.
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 04.07.2014.	Date of Availability of the European standard is 04.07.2014.
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 29.120.70

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation: Aru 10, 10317 Tallinn, Estonia; www.evs.ee; phone 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD

EN 60255-121

NORME EUROPÉENNE

EUROPÄISCHE NORM

July 2014

ICS 29.120.70

English Version

Measuring relays and protection equipment - Part 121: Functional requirements for distance protection (IEC 60255-121:2014)

Relais de mesure et dispositifs de protection - Partie 121: Exigences fonctionnelles pour protection de distance (CEI 60255-121:2014) Messrelais und Schutzeinrichtungen - Teil 121: Funktionsanforderungen für den Distanzschutz (IEC 60255-121:2014)

This European Standard was approved by CENELEC on 2014-04-11. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2014 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Foreword

The text of document 95/319/FDIS, future edition 1 of IEC 60255-121, prepared by IEC/TC 95 "Measuring relays and protection equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60255-121:2014.

The following dates are fixed:

- latest date by which the document has to be implemented at (dop) 2015-01-11 national level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with (dow) 2017-04-11 the document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60255-121:2014 was approved by CENELEC as a European Standard without any modification.

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication IEC 60050 IEC 60255-1	<u>Year</u> series -	Title International electrotechnical vocabulary Measuring relays and protection equipment	<u>EN/HD</u> - EN 60255-1	<u>Year</u> - -
IEC 61850	series	Communication networks and systems for power utility automation	EN 61850	series
IEC 61869-2	2012	Instrument transformers Part 2: Additional requirements for current	EN 61869-2	2012
IEC 61869-5	2011	Instrument transformers Part 5: Additional requirements for capacitor voltage transformers	EN 61869-5	2011

CONTENTS

FOF	REWORD	D		9
1	Scope.			11
2	Normat	ive referen	ces	11
3	Terms a	and definiti	ons	12
4	Specific	cation of th	e function	
	4.1	General		
	4.2	Input ene	rgizing quantities/energizing quantities	
	4.3	Binary in	put signals	14
	4.4	Functiona	al logic	15
		4.4.1	Faulted phase identification	15
		4.4.2	Directional signals	15
		4.4.3	Distance protection function characteristics	15
		4.4.4	Distance protection zone timers	16
	4.5	Binary ou	itput signals	16
		4.5.1	General	16
		4.5.2	Start (pickup) signals	16
		4.5.3	Operate signals	17
		4.5.4	Other binary output signals	17
	4.6	Additiona	I influencing functions/conditions	17
		4.6.1	General	
		4.6.2	Inrush current	
		4.6.3	Switch onto fault/trip on reclose	1/
		4.6.4	Voltage transformer (VI) signal failure (loss of voltage)	1/
		4.6.5	Power swings	18
5	Dorform	4.0.0	behavior during frequencies outside of the operating range	10 19
5	Fenom		incations	10
	5.1	General	and apparating ranges	18
	5.Z	Pagia abr	and operating ranges	10
	5.5	5 2 1		19
		532	Determination of accuracy related to time delay setting	19
		533	Disengaging time	
	54	Dvnamic	performance	20
	0.1	5 4 1	General	20
		5.4.2	Transient overreach (TO)	
		5.4.3	Operate time and transient overreach (SIR diagrams)	21
		5.4.4	Operate time and transient overreach (CVT-SIR diagrams)	21
		5.4.5	Typical operate time	21
	5.5	Performa	nce with harmonics	22
		5.5.1	General	22
		5.5.2	Steady-state harmonics tests	23
		5.5.3	Transient LC oscillation tests	23
	5.6	Performa	nce during frequency deviation	23
		5.6.1	General	23
		5.6.2	Steady state testing during frequency deviation	23
		5.6.3	Transient testing during frequency deviation	23
	5.7	Double in	ifeed tests	24

		5.7.1	General	24
		5.7.2	Single line, double infeed system	24
	λ	5.7.3	Double line, double infeed system	24
	5.8	Instrume	ent transformer (CT, VT and CVT) requirements	25
	\mathbf{O}	5.8.1	General	25
	1	5.8.2	CT requirements	25
6	Functio	onal tests.		
	6.1	General		
	6.2	Rated fr	equency characteristic accuracy tests	
		6.2.1	General	
		6.2.2	Basic characteristic accuracy under steady state conditions	
		6.2.3	Seasic directional accuracy under steady state conditions	
		6.2.4	Determination of accuracy related to time delay setting	
		6.2.5	Determination and reporting of the disengaging time	
	6.3	Dynamic	performance	
		6.3.1	General	
		6.3.2	Dynamic performance: operate time and transient overreach (SIR diagrams)	51
		6.3.3	Dynamic performance: operate time and transient overreach (CVT-SIR diagrams)	61
		6.3.4	Dynamic performance: transient overreach tests	65
		6.3.5	Dynamic performance: typical operate time	
	6.4	Performa	ance with harmonics	74
		6.4.1	Steady state harmonics tests	74
		6.4.2	Transient oscillation tests (network simulation L-C)	75
	6.5	Perform	ance during off-nominal frequency	
		6.5.1	Steady state frequency deviation tests	
		6.5.2	Transient frequency deviation tests	
	6.6	Double i	nfeed tests	
		6.6.1	Double infeed tests for single line	
		6.6.2	Double infeed tests for parallel lines (without mutual inductance)	
		6.6.3	Reporting of double infeed test results	100
7	Docum	entation re	equirements	101
	7.1	Type tes	st report	101
	7.2	Docume	ntation	101
Anr	nex A (in	formative)	Impedance characteristics	102
	Δ 1	Overviev	N	102
	Α.Τ		General	102
		Δ12	Non-directional circular characteristic	102
		Δ13	MHO characteristic	102
		Δ1Δ	Quadrilateral/polygonal	104
	Δ2	Frample		104
	11.2		General	106
		Δ 2 2	Non-directional circular characteristic (ohm)	106
		Δ 2 2	Reactive reach line characteristic	106
		Δ 2 /	MHO characteristic	107
		Δ25	Resistive and reactive intersecting lines characteristic	107
		Δ26	Offset MHO characteristic	יייייייייייייייייייייי 109
		11.2.0		

Annex B (informa protection zones	tive) Informative guide for the behaviour of timers in distance for evolving faults	. 110
Annex C (normat	ive) Setting example	. 112
Annex D (normat	ive) Calculation of mean, median and mode	. 115
D.1 Mea	an	. 115
D.2 Med	dian	. 115
D.3 Moo	de	. 115
D.4 Exa	ımple	. 115
Annex E (informa relays	tive) CT saturation and influence on the performance of distance	. 116
Annex F (informa requirements spe	tive) Informative guide for testing distance relays based on CT	. 119
F.1 Ger	neral	. 119
F.2 Tes	t data	. 120
F.3 CT	data and CT model	. 121
Annex G (informa	ative) Informative guide for dimensioning of CTs for distance	105
		. 125
G.1 Ger		.125
G.2 EXa		120
Annex H (normat	ive) Calculation of relay settings based on generic point P expressed	. 120
in terms of voltag	e and current	. 131
H.1 Set	tings for quadrilateral/polygonal characteristic	.131
H.2 Set	tings for MHO characteristic	. 133
Annex I (normativ	7e) Ramping methods for testing the basic characteristic accuracy	.134
I.1 Rel	ationship between simulated fault impedance and analog quantities	.134
I.Z Pre	-lault condition	124
I.S File	ase to phase faults	136
1.4 File	nos in the impedance plane	139
1.5.	1 Pseudo-continuous ramp	. 139
1.5.2	2 Ramp of shots	. 140
Annex J (normati	ve) Definition of fault inception angle	. 143
Annex K (normati	ive) Capacitive voltage instrument transformer model	. 145
K.1 Ger	neral	. 145
K.2 Cap	pacitor voltage transformer (CVT)	. 145
Figure 1 – Simpli	fied distance protection function block diagram	14
Figure 2 – Basic	accuracy specification of an operating characteristic	19
Figure 3 – Basic	angular accuracy specifications of directional lines	20
Figure 4 – SIR di	agram – Short line average operate time	22
Figure 5 – Fault p	positions to be considered for specifying the CT requirements	26
Figure 6 – Test p	rocedure for basic characteristic accuracy	31
Figure 7 – Calcul	ated test points A, B and C based on the effective range of U and I	32
Figure 8 – Modifi	ed points B' and C' based on the limited setting range	32
Figure 9 – Positio	on of test points A, B, C, D and E in the effective range of U and I	33
Figure 10 – Posit	ion of test points A, B', C', D and E in the effective range of U and I	33

Figure 11 – Quadrilateral characteristic showing ten test points	34
Figure 12 – Quadrilateral characteristic showing test ramps	35
Figure 13 – Quadrilateral characteristic showing accuracy limits	36
Figure 14 – Quadrilateral/polygonal characteristic showing accuracy limits	37
Figure 15 – MHO characteristic showing nine test points	37
Figure 16 – MHO characteristic showing test ramps	38
Figure 17 – Accuracy limits for MHO characteristic	39
Figure 18 – Basic directional element accuracy tests	44
Figure 19 – Directional element accuracy tests in the second quadrant	45
Figure 20 – Directional element accuracy tests in the second quadrant	46
Figure 21 – Directional element accuracy tests in the fourth quadrant	46
Figure 22 – Directional test accuracy lines in the fourth quadrant	47
Figure 23 – Position of the three-phase fault for testing the disengaging time	49
Figure 24 – Sequence of events for testing the disengaging time	50
Figure 25 – Power system network with zero load transfer	51
Figure 26 – Dynamic performance: operate time and dynamic overreach (SIR diagram)	55
Figure 27 – SIR diagram for short line: minimum operate time	56
Figure 28 – SIR diagram for short line: average operate time	57
Figure 29 – SIR diagram for short line: maximum operate time	57
Figure 30 – Dynamic performance tests (SIR diagrams)	59
Figure 31 – SIR diagram for long line: minimum operate time	61
Figure 32 – SIR diagram for long line: average operate time	62
Figure 33 – SIR diagram for long line: maximum operate time	62
Figure 34 – Dynamic performance: operate time and dynamic overreach (CVT-SIR diagram)	64
Figure 35 – CVT-SIR diagram for short line: minimum operate time	66
Figure 36 – CVT-SIR diagram for short line: average operate time	66
Figure 37 – CVT-SIR diagram for a short line: maximum operate time	67
Figure 38 – Fault statistics for typical operate time	70
Figure 39 – Frequency distribution of operate time	73
Figure 40 – Ramping test for harmonics	75
Figure 41 – Steady-state harmonics test	77
Figure 42 – Simulated power system network	78
Figure 43 – Flowchart of transient oscillation tests	79
Figure 44 – Simulated voltages (U_{L1} , U_{L2} , U_{L3}) and currents (I_{L1} , I_{L2} , I_{L3})	81
Figure 45 – Transient oscillation tests – Operate time	82
Figure 46 – Test points for quadrilateral characteristics	83
Figure 47 – Test points for MHO characteristic	83
Figure 48 – Test ramp direction for quadrilateral characteristic	83
Figure 49 – Test ramp direction for MHO characteristic	84
Figure 50 – Steady-state frequency deviation tests	86
Figure 51 – Short line model for frequency deviation test	87
Figure 52 – Flowchart of transient frequency deviation tests	89

Figure 53 – SIR diagrams for frequency deviation tests – average operate time	90
Figure 54 – Network model for single line tests	91
Figure 55 – Line to earth fault	92
Figure 56 – Line to line fault	92
Figure 57 – Line to line to earth fault	92
Figure 58 – Three-phase fault	93
Figure 59 - Network model for parallel lines tests	98
Figure 60 – Network model for current reversal test	99
Figure A.1 – Non-directional circular characteristic with directional supervision	102
Figure A.2 – MHO characteristic	103
Figure A.3 – Quadrilateral/polygonal characteristics	104
Figure A.4 – Non-directional circular characteristic (ohm)	106
Figure A.5 – Reactive reach line characteristic	107
Figure A.6 – MHO characteristics	107
Figure A.7 – Resistive and reactive intersecting lines characteristics	108
Figure A.8 – Offset MHO	108
Figure B.1 – The same fault type evolving from time delayed zone 3 (position 1) into time delayed zone 2 (position 2) after 200 ms	110
Figure B.2 – Phase to earth fault in time delayed zone 3 (position 1) evolving into three-phase fault in the same zone (position 2) after 200 ms	111
Figure C.1 – Setting example for a radial feeder	112
Figure C.2 – Phase to earth fault (LN)	113
Figure C.3 – Phase to phase fault (LL)	114
Figure E.1 – Fault positions to be considered for specifying the CT requirements	117
Figure F.1 – Fault positions to be considered	119
Figure F.2 – Double source network	120
Figure F.3 – Magnetization curve for the basic CT	122
Figure F.4 – Secondary current at the limit of saturation caused by AC component with no remanent flux in the CT	123
Figure F.5 – Secondary current in case of maximum DC offset	123
Figure G.1 – Distance relay example 1	126
Figure G.2 – Distance relay example 2	128
Figure H.1 – Quadrilateral/polygonal characteristic showing test point P on the reactive reach line	131
Figure H.2 – Quadrilateral distance protection function characteristic showing test point P on the resistive reach line.	132
Figure H.3 – MHO characteristic showing test point P	133
Figure I.1 – Three-line diagram showing relay connections and L1N fault	135
Figure I.2 – Voltage and current phasors for L1N fault	135
Figure I.3 – Voltages and currents for L1N fault, constant fault current	136
Figure I.4 – Voltages and currents for L1N fault, constant fault voltage	136
Figure I.5 – Three-line diagram showing relay connections and L1L2 fault	137
Figure I.6 – Voltage and current phasors for L1L2 fault	138
Figure I.7 – Voltages and currents for L1L2 fault, constant fault current	138
Figure I.8 – Voltages and currents for L1L2 fault, constant fault voltage	139

Figure I.9 – Pseudo-continuous ramp distance relay characteristic on an impedance plane	140
Figure I.10 – Pseudo-continuous ramp showing impedance step change and the time step	140
Figure I.11 – Ramp of shots distance relay characteristic on an impedance plane	141
Figure I.12 – Ramp of shots showing impedance step change and the time step	142
Figure I.13 – Ramp of shots with binary search algorithm	142
Figure J.1 – Graphical definition of fault inception angle	143
Figure K.1 – CVT equivalent electrical circuit	145
Figure K.2 – Transient response of the 50 Hz version of the CVT model	147
Table 1 – Example of effective and operating ranges of distance protection	18
Table 2 – Recommended levels of remanence in the optional cases when remanence is considered	27
Table 3 – Basic characteristic accuracy for various points (quadrilateral/polygonal)	42
Table 4 — Overall basic characteristic accuracy (quadrilateral/polygonal)	<u>۲</u> ۲
Table 5 Basic characteristics accuracy for various points (MHO)	42 12
Table 6 — Overall basic characteristic accuracy (MHO)	42 42
Table 7 – Overall basic characteristic accuracy (wind)	42
Table 7 – Basic directional accuracy for various fault types	41
Table 6 – Basic directional accuracy $e_{\alpha}\chi$	47
Table 9 – Results of disengaging time for all the tests	50
frequency	53
Table 11 – Short line SIR and source impedances for other rated current and frequency	54
Table 12 – Long line SIR and source impedances for selected rated current and frequency	59
Table 13 – Long line SIR and source impedances for other rated current and frequency	60
Table 14 – Short line CVT-SIR source impedance	63
Table 15 – Transient overreach table for short line	68
Table 16 – Transient overreach table for long line	68
Table 17 – Transient overreach table for short line with CVTs	69
Table 18 – Typical operate time	71
Table 19 – Typical operate time	71
Table 20 – Typical operate time	72
Table 21 – Typical operate time (mode, median, mean)	73
Table 22 – Steady state harmonics test	75
Table 23 – Capacitance values	78
Table 24 – Quadrilateral/polygonal basic characteristic accuracy at fmin and fmax	85
Table 25 – MHO basic characteristic accuracy at <i>f</i> min and <i>f</i> max	85
Table 26 – Tests without pre-fault load	94
Table 27 – Tests with pre-fault load	95
Table 28 – Current reversal test	98
Table 29 – Evolving faults (only one line affected)	99
Table 30 – Evolving faults (both lines affected)	100
Table 31 – Double infeed test results	101

Table F.1 – Magnetization curve data 122	
Table G.1 – Fault currents	
Table G.2 – Fault currents 128	
Table J.1 – Fault type and reference voltage 144	
Table K.1 – Parameter values for the 50 Hz version of the CVT model	
Table K.2 – Parameter values for the 60 Hz version of the CVT model	
Comment is a proview generated by the	

MEASURING RELAYS AND PROTECTION EQUIPMENT –

Part 121: Functional requirements for distance protection

1 Scope

This part of IEC 60255 specifies minimum requirements for functional and performance evaluation of distance protection function typically used in, but not limited to, line applications for effectively earthed, three-phase power systems. This standard also defines how to document and publish performance tests.

This standard covers distance protection function whose operating characteristic can be defined on an impedance plane and includes specification of the protection function, measurement characteristics, phase selection, directionality, starting and time delay characteristics.

The test methodologies for verifying performance characteristics and accuracy are included in this standard. The standard defines the influencing factors that affect the accuracy under steady state conditions and performance characteristics during dynamic conditions. It also includes the instrument transformer requirements for the protection function.

The distance protection functions covered by this standard are as follows:

	IEEE/ANSI C37.2 Function numbers	IEC 61850-7-4 Logical nodes
Phase distance protection	21	PDIS
Earth (ground) distance protection	21G	PDIS

This standard does not specify the functional description of additional features often associated with digital distance relays such as power swing blocking (PSB), out of step tripping (OST), voltage transformer (VT) supervision, switch onto fault (SOTF), trip on reclose (TOR), the logic for cross country faults in not effectively earthed networks, and trip conversion logic. Only their influence on the distance protection function is covered in this standard. The protection of series-compensated lines is beyond the scope of this standard.

The general requirements for measuring relays and protection equipment are defined in IEC 60255-1.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050 (all parts), International Electrotechnical Vocabulary (available at http://www.electropedia.org)

IEC 60255-1, Measuring relays and protection equipment – Part 1: Common requirements

IEC 61850 (all parts), Communication networks and systems for power utility automation